3,611 research outputs found
Características de los ejercicios de prácticas de laboratorio incluidos en los libros de textos de Ciencias utilizados en Cataluña
The laboratory exercices in science textbooks used in grades 9 to 12 in Catalonian schools were content analyzed by three instruments: The Inquiry Leve1 Index (ILI), the Laboratory Assessment Inventory (LAI) and the Laboratory Dimenssions Inventory (LDI). The analysis was carried out by 24 teachers under the guidance of two science educators as an assignment in an in-service course on teaching and evaluation in the laboratory. It was found that the number of laboratory exercises offered in Catalonian science texbooks is rather small compared with texbooks in countries such as the U. K. and U.S.A. Most of the exercises are of low inquiry level featuring manipulation but missing high other inquiry skills such as formulating questions and hypotheses, designing experiments, etc. The relationship between practical work and theory is hardly indicated and the potential of the laboratory as a means to enhancing concept learning andlor developing social skills are hardly being considered. There is an urgent need to reform laboratory work in Catalonian schools
Grover's Quantum Search Algorithm and Diophantine Approximation
In a fundamental paper [Phys. Rev. Lett. 78, 325 (1997)] Grover showed how a
quantum computer can find a single marked object in a database of size N by
using only O(N^{1/2}) queries of the oracle that identifies the object. His
result was generalized to the case of finding one object in a subset of marked
elements. We consider the following computational problem: A subset of marked
elements is given whose number of elements is either M or K, M<K, our task is
to determine which is the case. We show how to solve this problem with a high
probability of success using only iterations of Grover's basic step (and no
other algorithm). Let m be the required number of iterations; we prove that
under certain restrictions on the sizes of M and K the estimation m <
(2N^{1/2})/(K^{1/2}-M^{1/2}) obtains. This bound sharpens previous results and
is known to be optimal up to a constant factor. Our method involves
simultaneous Diophantine approximations, so that Grover's algorithm is
conceptualized as an orbit of an ergodic automorphism of the torus. We comment
on situations where the algorithm may be slow, and note the similarity between
these cases and the problem of small divisors in classical mechanics.Comment: 8 pages, revtex, Title change
Feeding live prey to zoo animals: response of zoo visitors in Switzerland
In summer 2007, with the help of a written questionnaire, the attitudes of more than 400 visitors to the zoological garden of Zurich, Switzerland, toward the idea of feeding live insects to lizards, live fish to otters, and live rabbits to tigers were investigated. The majority of Swiss zoo visitors agreed with the idea of feeding live prey (invertebrates and vertebrates) to zoo animals, both off- and on-exhibit, except in the case of feeding live rabbits to tigers on-exhibit. Women and frequent visitors of the zoo disagreed more often with the on-exhibit feeding of live rabbits to tigers. Study participants with a higher level of education were more likely to agree with the idea of feeding live invertebrates and vertebrates to zoo animals
off-exhibit. In comparison to an earlier study undertaken in Scotland, zoo visitors in Switzerland were more often in favor of the live feeding of vertebrates. Feeding live prey can counter the loss of hunting skills of carnivores and improve the animals’ well-being. However, feeding enrichments have to strike a balance between optimal living conditions of animals and the quality of visitor experience.
Our results show that such a balance can be found, especially when live feeding of mammals is carried out off-exhibit. A good interpretation of food enrichment might help zoos to win more support for the issue, and for re-introduction programs and conservation
Solving a "Hard" Problem to Approximate an "Easy" One: Heuristics for Maximum Matchings and Maximum Traveling Salesman Problems
We consider geometric instances of the Maximum Weighted Matching Problem
(MWMP) and the Maximum Traveling Salesman Problem (MTSP) with up to 3,000,000
vertices. Making use of a geometric duality relationship between MWMP, MTSP,
and the Fermat-Weber-Problem (FWP), we develop a heuristic approach that yields
in near-linear time solutions as well as upper bounds. Using various
computational tools, we get solutions within considerably less than 1% of the
optimum.
An interesting feature of our approach is that, even though an FWP is hard to
compute in theory and Edmonds' algorithm for maximum weighted matching yields a
polynomial solution for the MWMP, the practical behavior is just the opposite,
and we can solve the FWP with high accuracy in order to find a good heuristic
solution for the MWMP.Comment: 20 pages, 14 figures, Latex, to appear in Journal of Experimental
Algorithms, 200
A Survey on Approximation Mechanism Design without Money for Facility Games
In a facility game one or more facilities are placed in a metric space to
serve a set of selfish agents whose addresses are their private information. In
a classical facility game, each agent wants to be as close to a facility as
possible, and the cost of an agent can be defined as the distance between her
location and the closest facility. In an obnoxious facility game, each agent
wants to be far away from all facilities, and her utility is the distance from
her location to the facility set. The objective of each agent is to minimize
her cost or maximize her utility. An agent may lie if, by doing so, more
benefit can be obtained. We are interested in social choice mechanisms that do
not utilize payments. The game designer aims at a mechanism that is
strategy-proof, in the sense that any agent cannot benefit by misreporting her
address, or, even better, group strategy-proof, in the sense that any coalition
of agents cannot all benefit by lying. Meanwhile, it is desirable to have the
mechanism to be approximately optimal with respect to a chosen objective
function. Several models for such approximation mechanism design without money
for facility games have been proposed. In this paper we briefly review these
models and related results for both deterministic and randomized mechanisms,
and meanwhile we present a general framework for approximation mechanism design
without money for facility games
On the universality of the Discrete Nonlinear Schroedinger Equation
We address the universal applicability of the discrete nonlinear Schroedinger
equation. By employing an original but general top-down/bottom-up procedure
based on symmetry analysis to the case of optical lattices, we derive the most
widely applicable and the simplest possible model, revealing that the discrete
nonlinear Schroedinger equation is ``universally'' fit to describe light
propagation even in discrete tensorial nonlinear systems and in the presence of
nonparaxial and vectorial effects.Comment: 6 Pages, to appear in Phys. Rev.
The 'Parekh Report' - national identities with nations and nationalism
‘Multiculturalists’ often advocate national identities. Yet few study the ways in which ‘multiculturalists’ do so and in this article I will help to fill this gap. I will show that the Commission for Multi-Ethnic Britain’s report reflects a previously unnoticed way of thinking about the nature and worth of national identities that the Commission’s chair, and prominent political theorist, Bhikhu Parekh, had been developing since the 1970s. This way of thinking will be shown to avoid the questionable ways in which conservative and liberal nationalists discuss the nature and worth of national identities while offering an alternative way to do so. I will thus show that a report that was once criticised for the way it discussed national identities reflects how ‘multiculturalists’ think about national identities in a distinct and valuable way that has gone unrecognised
- …
