12,399 research outputs found

    Sea-Ice Production in Antarctic Coastal Polynyas Estimated From AMSR2 Data and Its Validation Using AMSR-E and SSM/I-SSMIS Data

    Get PDF
    Antarctic coastal polynyas are very high sea-ice production areas. The resultant large amount of brine rejection leads to the formation of dense water. The dense water forms Antarctic bottom water, which is the densest water in the global overturning circulation and a key player in climate change as a significant sink for heat and carbon dioxide. In this study, an algorithm was developed that uses Advanced Microwave Scanning Radiometer 2 (AMSR2) data (2012-present) to detect polynya area and estimates thin ice thickness by a method similar to that used to develop the algorithm for Advanced Microwave Scanning Radiometer for EOS (AMSR-E) data. Landfast sea-ice areas were also detected using AMSR2 data. Ice production in the polynyas was estimated by a heat flux calculation using AMSR2 sea-ice data. In four major polynyas, AMSR2 ice production was compared with AMSR-E (2003-2011) ice production through comparison of them with Special Sensor Microwave Imager (SSM/I) and Special Sensor Microwave Imager/Sounder (SSMIS) ice production. The comparison confirmed that the ice production from AMSR-E/2 data, which have higher spatial resolution than SSM/I-SSMIS data, can be used to analyze time series covering more than 10 years. For example, maps of annual ice production based on AMSR-E/2 data revealed detailed changes of the Mertz Polynya, where the ice production decreased significantly after the Mertz Glacier Tongue calving in 2010. Continuous monitoring of the coastal polynyas by the AMSR series sensors is essential for climate-change-related analyses in the Antarctic Ocean

    A two micron polarization survey toward dark clouds

    Get PDF
    A near infrared (2.2 micron) polarization survey of about 190 sources was conducted toward nearby dark clouds. The sample includes both background field stars and embedded young stellar objects. The aim is to determine the magnetic field structure in the densest regions of the dark clouds and study the role of magnetic fields in various phases of star formation processes, and to study the grain alignment efficiency in the dark cloud cores. From the polarization of background field stars and intrinsically unpolarized embedded sources, the magnetic field structure was determined in these clouds. From the intrinsic polarization of young stellar objects, the spatial distribution was determined of circumstellar dust around young stars. Combining the perpendicularity between the disks and magnetic fields with perpendicularity between the cloud elongation and magnetic fields, it is concluded that the magnetic fields might have dominated nearly all aspects of cloud dynamics, from the initial collapse of the clouds right through to the formation of disks/tori around young stars in these low to intermediate mass star forming clouds of the Taurus, Ophiuchus, and Perseus

    Laminin receptors in the retina: sequence analysis of the chick integrin alpha 6 subunit. Evidence for transcriptional and posttranslational regulation.

    Get PDF
    The integrin alpha 6 beta 1 is a prominent laminin receptor used by many cell types. In the present work, we isolate clones and determine the primary sequence of the chick integrin alpha 6 subunit. We show that alpha 6 beta 1 is a prominent integrin expressed by cells in the developing chick retina. Between embryonic days 6 and 12, both retinal ganglion cells and other retinal neurons lose selected integrin functions, including the ability to attach and extend neurites on laminin. In retinal ganglion cells, we show that this is correlated with a dramatic decrease in alpha 6 mRNA and protein, suggesting that changes in gene expression account for the developmental regulation of the interactions of these neurons with laminin. In other retinal neurons the expression of alpha 6 mRNA and protein remains high while function is lost, suggesting that the function of the alpha 6 beta 1 heterodimer in these cells is regulated by posttranslational mechanisms

    Analysis of quantum conductance of carbon nanotube junctions by the effective mass approximation

    Full text link
    The electron transport through the nanotube junctions which connect the different metallic nanotubes by a pair of a pentagonal defect and a heptagonal defect is investigated by Landauer's formula and the effective mass approximation. From our previous calculations based on the tight binding model, it has been known that the conductance is determined almost only by two parameters,i.e., the energy in the unit of the onset energy of more than two channels and the ratio of the radii of the two nanotubes. The conductance is calculated again by the effective mass theory in this paper and a simple analytical form of the conductance is obtained considering a special boundary conditions of the envelop wavefunctions. The two scaling parameters appear naturally in this treatment. The results by this formula coincide fairly well with those of the tight binding model. The physical origin of the scaling law is clarified by this approach.Comment: RevTe

    Topological Phases in Graphitic Cones

    Full text link
    The electronic structure of graphitic cones exhibits distinctive topological features associated with the apical disclinations. Aharonov-Bohm magnetoconductance oscillations (period Phi_0) are completely absent in rings fabricated from cones with a single pentagonal disclination. Close to the apex, the local density of states changes qualitatively, either developing a cusp which drops to zero at the Fermi energy, or forming a region of nonzero density across the Fermi energy, a local metalization of graphene.Comment: 4 pages, RevTeX 4, 3 PostScript figure

    Structural Modification and Metamagnetic Anomaly in the Ordered State of CeOs2Al10

    Full text link
    A caged compound CeOs2Al10, crystallizing in the orthorhombic YbFe2Al10-type structure, undergoes a mysterious phase transition at T_0=29 K. We report the results of electron diffraction, magnetization, and magnetoresistance for single crystals. Superlattice reflections characterized by a wave vector q = (0, -2/3, 2/3) observed at 15 K indicate a structural modification in the ordered state. Activation-type behavior of the electrical resistivity along the three principal axes below 50 K suggests gap opening in the conduction band. The magnetic susceptibility \chi = M/B is highly anisotropic, \chi_a>\chi_c>\chi_b, all of which sharply decrease on cooling below T_0. Furthermore, a metamagnetic anomaly in the magnetization and a step in the magnetoresistance occur at B=6-8 T only when the magnetic field is applied parallel to the orthorhombic c axis. However, T_0 hardly changes under magnetic fields up to 14 T, irrespective of the field direction. By using these data, we present a B-T phase diagram and discuss several scenarios for the mysterious transition.Comment: 6 pages, 7 figures, accepted for publication in Phys. Rev.

    Luminosity Dependent Evolution of Lyman Break Galaxies from redshift 5 to 3

    Get PDF
    In this contribution we briefly describe our recent results on the properties of Lyman break galaxies at z~5 obtained from deep and wide blank field surveys using Subaru telescope, and through the comparison with samples at lower redshift ranges we discuss the evolution of star-forming galaxies in the early universe.Comment: 2 pages, 1 figure, for the proceedings of the IAU Symposium 235, Galaxies Across the Hubble Time, J. Palous & F. Combes, ed

    Lyman Break Galaxies at z5z\sim5: Rest-Frame UV Spectra

    Full text link
    We report initial results for spectroscopic observations of candidates of Lyman Break Galaxies (LBGs) at z5z\sim5 in a region centered on the Hubble Deep Field-North by using the Faint Object Camera and Spectrograph attached to the Subaru Telescope. Eight objects with IC25.0I_C\leq25.0 mag, including one AGN, are confirmed to be at 4.5<z<5.24.5<z<5.2. The rest-frame UV spectra of seven LBGs commonly show no or weak Lyalpha emission line (rest-frame equivalent width of 0-10\AA) and relatively strong low-ionization interstellar metal absorption lines of SiII λ\lambda1260, OI+SiII λ\lambda1303, and CII λ\lambda1334 (mean rest-frame equivalent widths of them are 1.25.1-1.2 \sim -5.1 \AA). These properties are significantly different from those of the mean rest-frame UV spectrum of LBGs at z3z\sim3, but are quite similar to those of subgroups of LBGs at z3z\sim3 with no or weak Lyalpha emission. The weakness of Lyalpha emission and strong low-ionization interstellar metal absorption lines may indicate that these LBGs at z5z\sim5 are chemically evolved to some degree and have a dusty environment. Since the fraction of such LBGs at z5z\sim5 in our sample is larger than that at z3z\sim3, we may witness some sign of evolution of LBGs from z5z\sim5 to z3z\sim3, though the present sample size is very small. It is also possible, however, that the brighter LBGs tend to show no or weak Lyalpha emission, because our spectroscopic sample is bright (brighter than LL^{\ast}) among LBGs at z5z\sim5. More observations are required to establish spectroscopic nature of LBGs at z5z\sim5.Comment: 16 pages, 3 figures, accepted by Ap
    corecore