22 research outputs found
Recommended from our members
Triboluminescence flashes from high-speed ruptures in carbon nanotube Macro-Yarns
© 2017 During tensile tests of carbon nanotube (CNT) macrostructures (ribbons, ropes and tows) under dynamic strain rates (1000 s –1 ), we recorded temporally sporadic, spatially localized visible light emissions (“flashes”) of less than 1.5 µs duration. The flashes occurred at the fracture sites and were, depending on the sample morphology, either distributed randomly over time (for tows) or occurred all at once over larger areas of several pixels (for ribbons). In situ thermal camera measurements, as well as ex situ analysis by electron microscopy reveal a hierarchical mechanism of overall heating over the whole sample length during straining, and localized heating around the fracture surfaces. Temperatures around the fracture tip were calculated to be of 1800 K in average. We propose that the flashes are caused by charge separation due to CNT bond fracture and gas discharge of the surrounding gases. Triboluminescence, known for larger sugar crystals, has not been observed for carbon nanotubes previously. It results from the yarn-like morphology, the ultra-high strength and thermal conductivity of our CNT fibers, which at high strain rates concentrate the strain at CNT level and lead to CNT fracture, rather than bundle sliding
Optimizing the impact resistance of high tenacity Nylon 66 weft knitted fabrics via genetic algorithm
Viscoelastically generated prestress from ultra-high molecular weight polyethylene fibres
Effect of helmet liner systems and impact directions on severity of head injuries sustained in ballistic impacts: a finite element (FE) study
The current study aims to investigate the effectiveness of two different designs of helmet interior cushion, (Helmet 1: strap-netting; Helmet 2: Oregon Aero foam-padding), and the effect of the impact directions on the helmeted head during ballistic impact. Series of ballistic impact simulations (frontal, lateral, rear, and top) of a full-metal-jacketed bullet were performed on a validated finite element head model equipped with the two helmets, to assess the severity of head injuries sustained in ballistic impacts using both head kinematics and biomechanical metrics. Benchmarking with experimental ventricular and intracranial pressures showed that there is good agreement between the simulations and experiments. In terms of extracranial injuries, top impact had the highest skull stress, still without fracturing the skull. In regard to intracranial injuries, both the lateral and rear impacts generally gave the highest principal strains as well as highest shear strains, which exceed the injury thresholds. Off-cushion impacts were found to be at higher risk of intracranial injuries. The study also showed that the Oregon Aero foam pads helped to reduce impact forces. It also suggested that more padding inserts of smaller size may offer better protection. This provides some insights on future's helmet design against ballistic threats
Modelling delamination migration in angle-ply laminates
This paper presents a numerical study of the delamination migration in angle-ply laminates observed in experiments reported in the literature, where the delamination originally propagates along the lower, 0∘/60∘ interface and later migrates onto the upper, 60∘/0∘ interface. The recently-developed Floating Node Method (FNM) is used for modelling this problem. The initiation and propagation of both delamination and matrix cracks are modelled within the FNM elements. Experimentally-observed phenomena such as the numerous kinking attempts and the multiple onset locations of migration are successfully predicted. The effect of load offset on the locations of migration is captured. In addition, this work tries to shed light on the proper use of standard cohesive elements in cases where delamination migration is expected
Modelling the tensile failure of composites with the floating node method
© 2016 Elsevier B.V.This paper presents the modelling of tensile failure of composites using novel enriched elements defined based on the floating node method. An enriched ply element is developed, such that a matrix crack can be modelled explicitly within its domain. An enriched cohesive element is developed to incorporate the boundaries of matrix cracks on the interface, such that the local stress concentrations on the interface can be captured. The edge status variable approach allows the automatic propagation of a large number of matrix cracks in the mesh. A laminate element is formed, such that a fixed, planar mesh can be used for laminates of arbitrary layups. The application examples demonstrate that the proposed method is capable of predicting several challenging scenarios of composites tensile failure, such as the large number matrix cracks, grip-to-grip longitudinal splits, widespread delamination, explosive splitting and distributed fibre breaking in the 0 plies, etc. The complete failure process of ply-blocked composite laminates, up to the final breaking of the loosened 0° strips, is here firstly reproduced by modelling
