89,793 research outputs found

    Theory of the proximity effect in junctions with unconventional superconductors

    Get PDF
    We present a general theory of the proximity effect in junctions between diffusive normal metals (DN) and unconventional superconductors in the framework of the quasiclassical Green's function formalism. Various possible symmetry classes in a superconductor are considered which are consistent with the Pauli principle: even-frequency spin-singlet even-parity (ESE) state, even-frequency spin-triplet odd-parity (ETO) state, odd-frequency spin-triplet even-parity (OTE) state and odd-frequency spin-singlet odd-parity (OSO) state. For each of the above four cases symmetry and spectral properties of the induced pair amplitude in the DN are determined. It is shown that the pair amplitude in a DN belongs respectively to an ESE, OTE, OTE and ESE pairing state.Comment: 5 pages with one figur

    Stability of ferromagnetism in the Hubbard model on the kagom\'e lattice

    Full text link
    The Hubbard model on the kagom\'e lattice has highly degenerate ground states (the flat lowest band) in the corresponding single-electron problem and exhibits the so-called flat-band ferromagnetism in the many-electron ground states as was found by Mielke. Here we study the model obtained by adding extra hopping terms to the above model. The lowest single-electron band becomes dispersive, and there is no band gap between the lowest band and the other band. We prove that, at half-filling of the lowest band, the ground states of this perturbed model remain saturated ferromagnetic if the lowest band is nearly flat.Comment: 4 pages, 1 figur

    Theory of proximity effect in ferromagnet/superconductor heterostructures in the presence of spin dependent interfacial phase shift

    Get PDF
    We study the proximity effect and charge transport in ferromagnet (F)/superconductor (S) and S/F/I/F/S junctions (where I is insulator) by taking into account simultaneously exchange field in F and spin-dependent interfacial phase shifts (SDIPS) at the F/S interface. We solve the Usadel equations using extended Kupriyanov–Lukichev boundary conditions which include SDIPS, where spin-independent part of tunneling conductance GT and spin-dependent one Gφ coexist. The resulting local density of states (LDOS) in a ferromagnet depends both on the exchange energy Eex and Gφ/GT. We show that the magnitude of zero-temperature gap and the height of zero-energy LDOS have a non-monotonic dependence on Gφ/GT. We also calculate Josephson current in S/F/I/F/S junctions and show that crossover from 0-state to

    Uniaxial pressure dependencies of the phase boundary of TlCuCl_3

    Full text link
    We present a thermal expansion and magnetostriction study of TlCuCl_3, which shows a magnetic-field induced transition from a spin gap phase to a Neel ordered phase. Using Ehrenfest relations we derive huge and strongly anisotropic uniaxial pressure dependencies of the respective phase boundary, e.g. the transition field changes by about ±185\pm 185 GPa depending on the direction of uniaxial pressure.Comment: 2 pages, e figures; presented at SCES200

    Conductance of a helical edge liquid coupled to a magnetic impurity

    Full text link
    Transport in an ideal two-dimensional quantum spin Hall device is dominated by the counterpropagating edge states of electrons with opposite spins, giving the universal value of the conductance, 2e2/h2e^2/h. We study the effect on the conductance of a magnetic impurity, which can backscatter an electron from one edge state to the other. In the case of isotropic Kondo exchange we find that the correction to the electrical conductance caused by such an impurity vanishes in the dc limit, while the thermal conductance does acquire a finite correction due to the spin-flip backscattering.Comment: 5 pages, 2 figure

    Effective Temperature in a Colloidal Glass

    Get PDF
    We study the Brownian motion of particles trapped by optical tweezers inside a colloidal glass (Laponite) during the sol-gel transition. We use two methods based on passive rheology to extract the effective temperature from the fluctuations of the Brownian particles. All of them give a temperature that, within experimental errors, is equal to the heat bath temperature. Several interesting features concerning the statistical properties and the long time correlations of the particles are observed during the transition.Comment: to be published in Philosophical Magazin

    Single-cycle THz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3

    Full text link
    Using the tilted-pulse-intensity-front scheme, we generate single-cycle terahertz (THz) pulses by optical rectification of femtosecond laser pulses in LiNbO3. In the THz generation setup, the condition that the image of the grating coincides with the tilted-optical-pulse front is fulfilled to obtain optimal THz beam characteristics and pump-to-THz conversion efficiency. The designed focusing geometry enables tight focus of the collimated THz beam with a spot size close to the diffraction limit, and the maximum THz electric field of 1.2 MV/cm is obtained
    corecore