59,827 research outputs found
Stability of ferromagnetism in the Hubbard model on the kagom\'e lattice
The Hubbard model on the kagom\'e lattice has highly degenerate ground states
(the flat lowest band) in the corresponding single-electron problem and
exhibits the so-called flat-band ferromagnetism in the many-electron ground
states as was found by Mielke. Here we study the model obtained by adding extra
hopping terms to the above model. The lowest single-electron band becomes
dispersive, and there is no band gap between the lowest band and the other
band. We prove that, at half-filling of the lowest band, the ground states of
this perturbed model remain saturated ferromagnetic if the lowest band is
nearly flat.Comment: 4 pages, 1 figur
Disk wind feedback from high-mass protostars
We perform a sequence of 3D magnetohydrodynamic (MHD) simulations of the
outflow-core interaction for a massive protostar forming via collapse of an
initial cloud core of . This allows us to characterize the
properties of disk wind driven outflows from massive protostars, which can
allow testing of different massive star formation theories. It also enables us
to assess quantitatively the impact of outflow feedback on protostellar core
morphology and overall star formation efficiency. We find that the opening
angle of the flow increases with increasing protostellar mass, in agreement
with a simple semi-analytic model. Once the protostar reaches
the outflow's opening angle is so wide that it has blown
away most of the envelope, thereby nearly ending its own accretion. We thus
find an overall star formation efficiency of , similar to that
expected from low-mass protostellar cores. Our simulation results therefore
indicate that the MHD disk wind outflow is the dominant feedback mechanism for
helping to shape the stellar initial mass function from a given prestellar core
mass function.Comment: Accepted for publication in Ap
The Impact of Feedback in Massive Star Formation. II. Lower Star Formation Efficiency at Lower Metallicity
We conduct a theoretical study of the formation of massive stars over a wide
range of metallicities from 1e-5 to 1Zsun and evaluate the star formation
efficiencies (SFEs) from prestellar cloud cores taking into account multiple
feedback processes. Unlike for simple spherical accretion, in the case of disk
accretion feedback processes do not set upper limits on stellar masses. At
solar metallicity, launching of magneto-centrifugally-driven outflows is the
dominant feedback process to set SFEs, while radiation pressure, which has been
regarded to be pivotal, has only minor contribution even in the formation of
over-100Msun stars. Photoevaporation becomes significant in over-20Msun star
formation at low metallicities of <1e-2Zsun, where dust absorption of ionizing
photons is inefficient. We conclude that if initial prestellar core properties
are similar, then massive stars are rarer in extremely metal-poor environments
of 1e-5 - 1e-3Zsun. Our results give new insight into the high-mass end of the
initial mass function and its potential variation with galactic and
cosmological environments.Comment: 13 pages, 9 figures, accepted for publication in The Astrophysical
Journa
Electrically controlled superconducting states at the heterointerface SrTiO/LaAlO
We study the symmetry of Cooper pair in a two-dimensional Hubbard model with
the Rashba-type spin-orbit interaction as a minimal model of electron gas
generated at a heterointerface of SrTiO/LaAlO. Solving the Eliashberg
equation based on the third-order perturbation theory, we find that the gap
function consists of the mixing of the spin-singlet -wave component and
the spin-triplet -wave one due to the broken inversion symmetry
originating from the Rashba-type spin-orbit interaction. The ratio of the
d-wave and the p-wave component continuously changes with the carrier
concentration. We propose that the pairing symmetry is controlled by tuning the
gate voltage.Comment: 4 pages, 4 figures; added reference
Phonon-phonon interactions in transition metals
In this paper the phonon self energy produced by anharmonicity is calculated
using second order many body perturbation theory for all bcc, fcc and hcp
transition metals. The symmetry properties of the phonon interactions are used
to obtain an expression for the self energy as a sum over irreducible triplets,
very similar to integration in the irreducible part of the Brillouin zone for
one particle properties. The results obtained for transition metals shows that
the lifetime is on the order of 10^10 s. Moreover the Peierls approximation for
the imaginary part of the self energy is shown to be reasonable for bcc and fcc
metals. For hcp metals we show that the Raman active mode decays into a pair of
acoustic phonons, their wave vector being located on a surface defined by
conservation laws.Comment: 14 pages, 3 figure
Learning to become an expert : reinforcement learning and the acquisition of perceptual expertise
To elucidate the neural mechanisms underlying the development of perceptual expertise, we recorded ERPs while participants performed a categorization task. We found that as participants learned to discriminate computer-generated "blob'' stimuli, feedback modulated the amplitude of the errorrelated negativity (ERN)-an ERP component thought to reflect error evaluation within medial-frontal cortex. As participants improved at the categorization task, we also observed an increase in amplitude of an ERP component associated with object recognition (the N250). The increase in N250 amplitude preceded an increase in amplitude of an ERN component associated with internal error evaluation (the response ERN). Importantly, these electroencephalographic changes were not observed for participants who failed to improve on the categorization task. Our results suggest that the acquisition of perceptual expertise relies on interactions between the posterior perceptual system and the reinforcement learning system involving medial-frontal cortex
Semi-relativistic approximation to gravitational radiation from encounters with nonspinning black holes
The capture of compact bodies by black holes in galactic nuclei is an
important prospective source for low frequency gravitational wave detectors,
such as the planned Laser Interferometer Space Antenna. This paper calculates,
using a semirelativistic approximation, the total energy and angular momentum
lost to gravitational radiation by compact bodies on very high eccentricity
orbits passing close to a supermassive, nonspinning black hole; these
quantities determine the characteristics of the orbital evolution necessary to
estimate the capture rate. The semirelativistic approximation improves upon
treatments which use orbits at Newtonian-order and quadrupolar radiation
emission, and matches well onto accurate Teukolsky simulations for low
eccentricity orbits. Formulae are presented for the semirelativistic energy and
angular momentum fluxes as a function of general orbital parameters.Comment: 27 pages, 12 figures; v2: revised manuscript includes small changes
to make paper consistent with published version; v3: a statement about how to
generalise our results to hyperbolic orbits was incorrect, new version
includes published erratum as an appendi
- …
