1,119 research outputs found

    The isotropic-nematic interface in suspensions of hard rods: Mean-field properties and capillary waves

    Get PDF
    We present a study of the isotropic-nematic interface in a system of hard spherocylinders. First we compare results from Monte Carlo simulations and Onsager density functional theory for the interfacial profiles of the orientational order parameter and the density. Those interfacial properties that are not affected by capillary waves are in good agreement, despite the fact that Onsager theory overestimates the coexistence densities. Then we show results of a Monte Carlo study of the capillary waves of the interface. In agreement with recent theoretical investigations (Eur.Phys.J. E {\bf 18} 407 (2005)) we find a strongly anistropic capillary wave spectrum. For the wave-numbers accessed in our simulations, the spectrum is quadratic, i.e.elasticity does not play a role. We conjecture that this effect is due to the strong bending rigidity of the director field in suspensions of spherocylinders.Comment: 8 pages, 10 figure

    Statistical-mechanical formulation of Lyapunov exponents

    Full text link
    We show how the Lyapunov exponents of a dynamic system can in general be expressed in terms of the free energy of a (non-Hermitian) quantum many-body problem. This puts their study as a problem of statistical mechanics, whose intuitive concepts and techniques of approximation can hence be borrowed.Comment: 10 pages, 3 figures, RevTex

    Interactions between Magnetic Nanowires and Living Cells : Uptake, Toxicity and Degradation

    Full text link
    We report on the uptake, toxicity and degradation of magnetic nanowires by NIH/3T3 mouse fibroblasts. Magnetic nanowires of diameters 200 nm and lengths comprised between 1 {\mu}m and 40 {\mu}m are fabricated by controlled assembly of iron oxide ({\gamma}-Fe2O3) nanoparticles. Using optical and electron microscopy, we show that after 24 h incubation the wires are internalized by the cells and located either in membrane-bound compartments or dispersed in the cytosol. Using fluorescence microscopy, the membrane-bound compartments were identified as late endosomal/lysosomal endosomes labeled with lysosomal associated membrane protein (Lamp1). Toxicity assays evaluating the mitochondrial activity, cell proliferation and production of reactive oxygen species show that the wires do not display acute short-term (< 100 h) toxicity towards the cells. Interestingly, the cells are able to degrade the wires and to transform them into smaller aggregates, even in short time periods (days). This degradation is likely to occur as a consequence of the internal structure of the wires, which is that of a non-covalently bound aggregate. We anticipate that this degradation should prevent long-term asbestos-like toxicity effects related to high aspect ratio morphologies and that these wires represent a promising class of nanomaterials for cell manipulation and microrheology.Comment: 21 pages 12 figure

    Dynamics and geometric properties of the k-Trigonometric model

    Full text link
    We analyze the dynamics and the geometric properties of the Potential Energy Surfaces (PES) of the k-Trigonometric Model (kTM), defined by a fully-connected k-body interaction. This model has no thermodynamic transition for k=1, a second order one for k=2, and a first order one for k>2. In this paper we i) show that the single particle dynamics can be traced back to an effective dynamical system (with only one degree of freedom); ii) compute the diffusion constant analytically; iii) determine analytically several properties of the self correlation functions apart from the relaxation times which we calculate numerically; iv) relate the collective correlation functions to the ones of the effective degree of freedom using an exact Dyson-like equation; v) using two analytical methods, calculate the saddles of the PES that are visited by the system evolving at fixed temperature. On the one hand we minimize |grad V|^2, as usually done in the numerical study of supercooled liquids and, on the other hand, we compute the saddles with minimum distance (in configuration space) from initial equilibrium configurations. We find the same result from the two calculations and we speculate that the coincidence might go beyond the specific model investigated here.Comment: 36 pages, 13 figure

    The Goldbeter-Koshland switch in the first-order region and its response to dynamic disorder

    Get PDF
    In their classical work (Proc. Natl. Acad. Sci. USA, 1981, 78:6840-6844), Goldbeter and Koshland mathematically analyzed a reversible covalent modification system which is highly sensitive to the concentration of effectors. Its signal-response curve appears sigmoidal, constituting a biochemical switch. However, the switch behavior only emerges in the "zero-order region", i.e. when the signal molecule concentration is much lower than that of the substrate it modifies. In this work we showed that the switching behavior can also occur under comparable concentrations of signals and substrates, provided that the signal molecules catalyze the modification reaction in cooperation. We also studied the effect of dynamic disorders on the proposed biochemical switch, in which the enzymatic reaction rates, instead of constant, appear as stochastic functions of time. We showed that the system is robust to dynamic disorder at bulk concentration. But if the dynamic disorder is quasi-static, large fluctuations of the switch response behavior may be observed at low concentrations. Such fluctuation is relevant to many biological functions. It can be reduced by either increasing the conformation interconversion rate of the protein, or correlating the enzymatic reaction rates in the network.Comment: 23 pages, 4 figures, accepted by PLOS ON

    Study of ferroelastic behavior and microstructure in polycrystalline LaCoO3 using Transmission Electron Microscopy

    Get PDF
    LaCoO3 is a ferroelastic perovskite-type oxide. It has been shown to undergo creep at room temperature. LaCoO3 responds to stress by changing its domain structure, resulting in formation of spontaneous strain. The microstructure of a sample of polycrystalline LaCoO3 with history of stress was investigated using Transmission Electron Microscopy (TEM). It was compared to an unstrained sample to determine what changes are produced. TEM analysis has shown an increase in defect density as well as the appearance of atomic scale ordering. The causes of the observed ordering and their relation to ferroelastic behavior are explored
    corecore