389 research outputs found
QoS multicast tree construction in IP/DWDM optical internet by bio-inspired algorithms
Copyright @ Elsevier Ltd. All rights reserved.In this paper, two bio-inspired Quality of Service (QoS) multicast algorithms are proposed in IP over dense wavelength division multiplexing (DWDM) optical Internet. Given a QoS multicast request and the delay interval required by the application, both algorithms are able to find a flexible QoS-based cost suboptimal routing tree. They first construct the multicast trees based on ant colony optimization and artificial immune algorithm, respectively. Then a dedicated wavelength assignment algorithm is proposed to assign wavelengths to the trees aiming to minimize the delay of the wavelength conversion. In both algorithms, multicast routing and wavelength assignment are integrated into a single process. Therefore, they can find the multicast trees on which the least wavelength conversion delay is achieved. Load balance is also considered in both algorithms. Simulation results show that these two bio-inspired algorithms can construct high performance QoS routing trees for multicast applications in IP/DWDM optical Internet.This work was supported in part ny the Program for New Century Excellent Talents in University, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant no. 60673159 and 70671020, the National High-Tech Reasearch and Development Plan of China under Grant no. 2007AA041201, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant no. 20070145017
Output power and SNR swings in cascades of EDFAs for circuit- and packet-switched optical networks
The novel angiogenic cytokine secretoneurin promotes angiogenesis, arteriogenesis and vasculogenesis in the mouse hind-limb ischemia model
The common genetic variant rs1278960 determining expression of Interferon-lambda predicts inflammatory response in critically ill COVID-19 patients
The single nucleotide polymorphism rs12979860 is associated with the production of IFNλ4, a type III interferon, which offers protection from viral infection via its proinflammatory properties. We investigated if a genetically determined increase in IFNλ4 affects disease progression in SARS-CoV-2. This prospective, single-center study involved critically ill SARS-CoV-2 patients admitted to the intensive care unit. We performed genotyping for rs12979860 and analyzed daily laboratory data. Genotype frequencies were compared with an external validation cohort. Critically ill individuals with COVID-19 (n = 184; 29.3% women) were included. Median age was 63 years. The TT genotype was present in 11%, CT in 48% and CC in 41%. At baseline, CRP, ferritin, transferrin and neopterin did not differ significantly between groups. Longitudinal analysis revealed significant genotype-dependent differences in CRP, ferritin and neopterin with the highest peak in TT patients after 10–15 days. A higher need for renal replacement therapy (31.6% vs. 11.7%, p = 0.044) and mechanical ventilation (22 days vs. 15 days, p = 0.018) was observed in the TT group. The SNP rs12979860 near IFNL4 is associated with distinct inflammatory trajectories in critically ill COVID-19 patients. Genetic determinants of the immune response influence the severity of inflammation and clinical outcomes in severe COVID-19
The Liver-Selective Thyromimetic T-0681 Influences Reverse Cholesterol Transport and Atherosclerosis Development in Mice
Liver-selective thyromimetics have been reported to efficiently reduce plasma cholesterol through the hepatic induction of both, the low-density lipoprotein receptor (LDLr) and the high-density lipoprotein (HDL) receptor; the scavenger receptor class B type I (SR-BI). Here, we investigated the effect of the thyromimetic T-0681 on reverse cholesterol transport (RCT) and atherosclerosis, and studied the underlying mechanisms using different mouse models, including mice lacking LDLr, SR-BI, and apoE, as well as CETP transgenic mice.T-0681 treatment promoted bile acid production and biliary sterol secretion consistently in the majority of the studied mouse models, which was associated with a marked reduction of plasma cholesterol. Using an assay of macrophage RCT in mice, we found T-0681 to significantly increase fecal excretion of macrophage-derived neutral and acidic sterols. No positive effect on RCT was found in CETP transgenic mice, most likely due to the observed decrease in plasma CETP mass. Studies in SR-BI KO and LDLr KO mice suggested hepatic LDLr to be necessary for the action of T-0681 on lipid metabolism, as the compound did not have any influence on plasma cholesterol levels in mice lacking this receptor. Finally, prolonged treatment with T-0681 reduced the development of atherosclerosis by 60% in apoE KOs on Western type diet. In contrast, at an earlier time-point T-0681 slightly increased small fatty streak lesions, in part due to an impaired macrophage cholesterol efflux capacity, when compared to controls.The present results show that liver-selective thyromimetics can promote RCT and that such compounds may protect from atherosclerosis partly through induction of bile acid metabolism and biliary sterol secretion. On-going clinical trials will show whether selective thyromimetics do prevent atherosclerosis also in humans
SARS-CoV-2 activates the TLR4/MyD88 pathway in human macrophages: A possible correlation with strong pro-inflammatory responses in severe COVID-19
Background
Toll-like receptors (TLRs) play a pivotal role in the immunologic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exaggerated inflammatory response of innate immune cells, however, may drive morbidity and death in Coronavirus disease 19 (COVID-19).
Objective
We investigated the engagement of SARS-CoV-2 with TLR4 in order to better understand how to tackle hyperinflammation in COVID-19.
Methods
We combined RNA-sequencing data of human lung tissue and of bronchoalveolar lavage fluid cells derived from COVID-19 patients with functional studies in human macrophages using SARS-CoV-2 spike proteins and viable SARS-CoV-2. Pharmacological inhibitors as well as gene editing with CRISPR/Cas9 were used to delineate the signalling pathways involved.
Results
We found TLR4 to be the most abundantly upregulated TLR in human lung tissue irrespective of the underlying pathology. Accordingly, bronchoalveolar lavage fluid cells from patients with severe COVID-19 showed an NF-κB-pathway dominated immune response, whereas they were mostly defined by type I interferon signalling in moderate COVID-19. Mechanistically, we found the Spike ectodomain, but not receptor binding domain monomer to induce TLR4-dependent inflammation in human macrophages. By using pharmacological inhibitors as well as CRISPR/Cas9 deleted macrophages, we identify SARS-CoV-2 to engage canonical TLR4-MyD88 signalling. Importantly, we demonstrate that TLR4 blockage prevents exaggerated inflammatory responses in human macrophages infected with different SARS-CoV-2 variants, including immune escape variants B.1.1.7.-E484K and B.1.1.529 (omicron).
Conclusion
Our study critically extends the current knowledge on TLR-mediated hyperinflammatory responses to SARS-CoV-2 in human macrophages, paving the way for novel approaches to tackle severe COVID-19.publishedVersio
The role of innate immunity and bioactive lipid mediators in COVID-19 and influenza
In this review, we discuss spatiotemporal kinetics and inflammatory signatures of innate immune cells specifically found in response to SARS-CoV-2 compared to influenza virus infection. Importantly, we cover the current understanding on the mechanisms by which SARS-CoV-2 may fail to engage a coordinated type I response and instead may lead to exaggerated inflammation and death. This knowledge is central for the understanding of available data on specialized pro-resolving lipid mediators in severe SARS-CoV-2 infection pointing toward inhibited E-series resolvin synthesis in severe cases. By investigating a publicly available RNA-seq database of bronchoalveolar lavage cells from patients affected by COVID-19, we moreover offer insights into the regulation of key enzymes involved in lipid mediator synthesis, critically complementing the current knowledge about the mediator lipidome in severely affected patients. This review finally discusses different potential approaches to sustain the synthesis of 3-PUFA-derived pro-resolving lipid mediators, including resolvins and lipoxins, which may critically aid in the prevention of acute lung injury and death from COVID-19.Proteomic
Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs
Life-threatening "breakthrough" cases of critical COVID-19 are attributed to poor or waning antibody (Ab) response to SARS-CoV-2 vaccines in individuals already at risk. Preexisting auto-Abs neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; their contribution to hypoxemic breakthrough cases in vaccinated people is unknown. We studied a cohort of 48 individuals (aged 20 to 86 years) who received two doses of a messenger RNA (mRNA) vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Ab levels to the vaccine, neutralization of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal Ab response to the vaccine. Among them, 10 (24%) had auto-Abs neutralizing type I IFNs (aged 43 to 86 years). Eight of these 10 patients had auto-Abs neutralizing both IFN-α2 and IFN-ω, whereas two neutralized IFN-ω only. No patient neutralized IFN-β. Seven neutralized type I IFNs at 10 ng/ml and three at 100 pg/ml only. Seven patients neutralized SARS-CoV-2 D614G and Delta efficiently, whereas one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only type I IFNs at 100 pg/ml neutralized both D614G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating Abs capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a notable proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population
A time-resolved proteomic and prognostic map of COVID-19.
COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease
- …
