1,824 research outputs found
Clarissa, héroïne de roman ? Le refus du mariage comme gageure romanesque
International audienc
An Extended Interpretation of the Thermodynamic Theory Including an Additional Energy Associated with a Decrease in Mass
Although its practical efficiency is unquestionable, the thermodynamic tool
presents a slight inconsistency from the theoretical point of view. After
exposing arguments, which explain this opinion, a suggestion is put forward to
solve the problem. It consists of linking the mass-energy relation d m = m
c^{2} to the laws of thermodynamics. This combination results in a
clarification of the theory and opens a bridge between thermodynamics and
gravitation. It is shown that the submicroscopic consideration, which is based
on the cellular concept of the real physical space when the space is treated as
the tessellation lattice, indeed strongly supports the idea of a variation in
mass in thermodynamic processes.Comment: 25 pages and 6 figure
Laser-Enhanced Arc-Jet Facility Wedge Tests: Avcoat Material Performance Under Convective and Radiative Heating Environments
This paper presents the first set of experimental results from Laser Enhanced Arc-Jet Facility (LEAF-Lite) tests that were conducted shortly after the radiative LEAF-Lite system was added to the 60-MW Interaction Heating Facility at NASA Ames Research Center. Results were gathered to characterize the new radiative and combined heating capabilities as well as the convective heating resulting from the new IHF nozzle that was required for combined heating operations. Tests were ultimately conducted at several combinations of radiative and convective heating prompted by the need to understand the effect of combined heating on the Orion heatshield material prior to pursuing combined heating tests of the more complex block architecture
Cyanate Ester and Phthalonitrile Impregnated Carbon Ablative TPS
Phenolic resin has extensive heritage as a TPS (Thermal Protection Systems) material, however, alternative resin systems such as Cyanate Ester and Phthalonitrile may offer improved performance compared to state-of-the-art phenolic resin. These alternative resin systems may have higher char yield, higher char strength, lower thermal conductivity and improved mechanical properties. In current work at NASA Ames alternative resin systems were uniformly infused into fibrous substrates and preliminary properties characterized. The density of the cyanate ester infused in fibrous substrate ranged from 0.25-0.3 grams per cubic centimeter compared to PICA (Phenolic resin impregnated carbon ablative) having a density of approximately 0.25 grams per cubic centimeter. The density of Phthalonitrile varies from 0.22-0.25 grams per cubic centimeter. Initial formulations of these new resin systems were recently tested at the LARC HyMETs (Hypersonic Materials Environmental Test System) facility to evaluate their performance and data such as back face temperature, char yield, and recession are compared to PICA. Cyanate Ester and Phthalonitrile impregnated carbon ablative samples showed comparable performance to phenolic resin impregnated carbon ablative samples
Development of Advanced Conformal Ablative TPS Fabricated from Rayon- and PAN-Based Carbon Felts
The conformal ablative TPS first developed under NASA's Hypersonics Project in the early 2000's demonstrated very low through the thickness conductivity compared to state-ofthe- art PICA. However, in initial arcjet testing of Conformal-1, surface recession rates were 2x higher than PICA. Because commercial carbon felts are currently available as very thin substrates, this was a concern if conformal TPS were to be considered for a mission that required thicker material. Discussed in this paper are the results of the development of an Advanced Conformal TPS derived from thicker, higher density carbon felt. Two substrate systems were evaluated, the first material was a needled rayon-based carbon felt and the other a needled PAN-based carbon felt. Both substrates were impregnated with phenolic resin following the PICA/CPICA process to add a low density phenolic matrix to the system prior to aerothermal screening at the LaRC HyMETS facility and larger scale testing in the NASA ARC Interaction Heating Facility (IHF) at heating fluxes ranging from 250-1700 W/cm2
Comparison of soil macro-invertebrate communities in Malaysian oil palm plantations with secondary forest from the viewpoint of litter decomposition
Biodiversity decline in rapidly expanding oil palm plantations is of global concern. Many studies have demonstrated that fauna species diversity is lower in oil palm plantations than forests. However, information about the flow-on effects of these declines in species diversity on ecosystem functioning is scarce for oil palm plantations. Litter decomposition performed by soil organisms is a vital ecosystem function that regulates nutrient cycling and carbon sequestration. Some studies have found a high level of redundancy among litter decomposing species. In order to evaluate the effects of the conversion of forests to oil palm plantations on decomposition, we investigated the abundance and biomass of soil macro-invertebrates at sites in two oil palm plantations and a secondary forest in Malaysia. Biodiversity of soil macro-invertebrates were lower in the oil palm plantations than in the secondary forest. The abundance and biomass of surface–living litter transformers was lower in oil palm plantations than forest, probably due to the isolated piles of frond litter that occur in plantations, instead of the more continuous litter layer observed in forests. However, we found dense populations of wood (litter)–feeding termites in the thick rachises of fronds heaped on the ground surface. A pantropical earthworm species, Pontoscolex corethrurus, which buries the litter through cast deposition, abounded more in the oil palm plantations than in the secondary forest. These characteristics of soil macro-invertebrates have also been reported in other oil palm plantations. Thus, we conclude that the conversion of forests to oil palm plantations may reduce diversity of soil macro-invertebrates, increase the heterogeneity of macro-invertebrates distribution and decrease populations of some functional groups of soil macro-invertebrates. However, overall, forest conversion does not appear to have a negative impact on the decomposition process to a great extent, owing to the colonization of plantation sites by other groups of decomposer animals that are favored by disturbance and/or the great amount of localized input of fresh fronds pruned at the time of fruit harvesting
- …
