86,506 research outputs found
The effects of latent heat release on the waves with Ekman pumping
The problem of the effects of the latent heat release on the waves with both upper and lower boundary frictional effects is investigated. The influence of the vertical shear of the basic wind in these models will be investigated. These investigations will shed some light on the method of solution to the problem of including the effect of Ekman pumping on the moist baroclinic waves in the model of Tang and Fichtl
Probing many-body localization in a disordered quantum magnet
Quantum states cohere and interfere. Quantum systems composed of many atoms
arranged imperfectly rarely display these properties. Here we demonstrate an
exception in a disordered quantum magnet that divides itself into nearly
isolated subsystems. We probe these coherent clusters of spins by driving the
system beyond its linear response regime at a single frequency and measuring
the resulting "hole" in the overall linear spectral response. The Fano shape of
the hole encodes the incoherent lifetime as well as coherent mixing of the
localized excitations. For the disordered Ising magnet,
, the quality factor for spectral holes
can be as high as 100,000. We tune the dynamics of the quantum degrees of
freedom by sweeping the Fano mixing parameter through zero via the
amplitude of the ac pump as well as a static external transverse field. The
zero-crossing of is associated with a dissipationless response at the drive
frequency, implying that the off-diagonal matrix element for the two-level
system also undergoes a zero-crossing. The identification of localized
two-level systems in a dense and disordered dipolar-coupled spin system
represents a solid state implementation of many-body localization, pushing the
search forward for qubits emerging from strongly-interacting, disordered,
many-body systems.Comment: 22 pages, 6 figure
ACM/IEEE-CS information technology curriculum 2017: A status update
The IT2008 Curriculum Guidelines for Undergraduate Degree Programs in Information Technology has been showing its age, and in 2014, the ACM Education Board agreed to oversee the creation of a revision, now being referred to as IT2017. Much progress has been made, and a version 0.6 will be ready by Oct 2016. All proposed panel members are members of the IT2017 Task Group
Optical properties of Si/Si0.87Ge0.13 multiple quantum well wires
Nanometer-scale wires cut into a Si/Si0.87Ge0.13 multiple quantum well structure were fabricated and characterized by using photoluminescence and photoreflectance at temperatures between 4 and 20 K. It was found that, in addition to a low-energy broadband emission at around 0.8 eV and other features normally observable in photoluminescence measurements, fabrication process induced strain relaxation and enhanced electron-hole droplets emission together with a new feature at 1.131 eV at 4 K were observed. The latter was further identified as a transition related to impurities located at the Si/Si0.87Ge0.13 heterointerfaces
Large oscillating non-local voltage in multi-terminal single wall carbon nanotube devices
We report on the observation of a non-local voltage in a ballistic
one-dimensional conductor, realized by a single-wall carbon nanotube with four
contacts. The contacts divide the tube into three quantum dots which we control
by the back-gate voltage . We measure a large \emph{oscillating} non-local
voltage as a function of with zero mean. Though a classical
resistor model can account for a non-local voltage including change of sign, it
fails to describe the magnitude properly. The large amplitude of is
due to quantum interference effects and can be understood within the
scattering-approach of electron transport
Exploiting Temporal Complex Network Metrics in Mobile Malware Containment
Malicious mobile phone worms spread between devices via short-range Bluetooth
contacts, similar to the propagation of human and other biological viruses.
Recent work has employed models from epidemiology and complex networks to
analyse the spread of malware and the effect of patching specific nodes. These
approaches have adopted a static view of the mobile networks, i.e., by
aggregating all the edges that appear over time, which leads to an approximate
representation of the real interactions: instead, these networks are inherently
dynamic and the edge appearance and disappearance is highly influenced by the
ordering of the human contacts, something which is not captured at all by
existing complex network measures. In this paper we first study how the
blocking of malware propagation through immunisation of key nodes (even if
carefully chosen through static or temporal betweenness centrality metrics) is
ineffective: this is due to the richness of alternative paths in these
networks. Then we introduce a time-aware containment strategy that spreads a
patch message starting from nodes with high temporal closeness centrality and
show its effectiveness using three real-world datasets. Temporal closeness
allows the identification of nodes able to reach most nodes quickly: we show
that this scheme can reduce the cellular network resource consumption and
associated costs, achieving, at the same time, a complete containment of the
malware in a limited amount of time.Comment: 9 Pages, 13 Figures, In Proceedings of IEEE 12th International
Symposium on a World of Wireless, Mobile and Multimedia Networks (WOWMOM '11
Recommended from our members
Prospect of Making Ceramic Shell Mold by Ceramic Laser Fusion
Manufacturing prototypical castings by conventional investment casting not only takes
several weeks, but also is prohibitively expensive. Z Corporation in USA, EOS GmbH and
IPT in Germany employ the techniques of 3DP and SLS respectively to make directly ceramic
shell molds for metal castings. Although those techniques dramatically reduce time
expenditure and production cost, each layer cannot be thinner than 50 µm because of using
powder to pave layers. The dimensional accuracy and roughness of the castings still cannot
meet the specification of precision casting. Therefore, in this paper the ceramic laser fusion
(CLF) was used to pave layers. Each layer can be thinner than 25 µm, so that the step effect
can be diminished and the workpiece surface can be smoother; drying time will be shortened
dramatically. Moreover, the inherent solid-state support formed by green portion has the
capability of preventing upward and downward deformation of the scanned cross sections. In
order to make shell mold which meets the roughness requirement (Rq=3.048µm) of the
precision casting, following issues have to be further studied: (1) design a proper ceramic
shell mold structure, (2) design a paving chamber for paving a complete green layer which
can be easily collapsed, (3) cut down drying time, (4) optimize laser scanning process
parameters with the smallest distortion, (5) eliminate sunken area, (6) reduce layer thickness
to less than13µm, (7) control power to guarantee the energy uniformly absorbed by workpiece,
and (8) develop a method which can directly clean green portion in cavity from gate.Mechanical Engineerin
- …
