169 research outputs found

    ALMA Maps of Dust and Warm Dense Gas Emission in the Starburst Galaxy IC 5179^\star

    Get PDF
    We present our high-resolution (0.15×0.130^{\prime\prime}.15\times0^{\prime\prime}.13, \sim34 pc) observations of the CO(6-5) line emission, which probes the warm and dense molecular gas, and the 434 μ\mum dust continuum emission in the nuclear region of the starburst galaxy IC 5179, conducted with the Atacama Large Millimeter Array (ALMA). The CO(6-5) emission is spatially distributed in filamentary structures with many dense cores and shows a velocity field that is characteristic of a circum-nuclear rotating gas disk, with 90% of the rotation speed arising within a radius of 150\lesssim150 pc. At the scale of our spatial resolution, the CO(6-5) and dust emission peaks do not always coincide, with their surface brightness ratio varying by a factor of \sim10. This result suggests that their excitation mechanisms are likely different, as further evidenced by the Southwest to Northeast spatial gradient of both CO-to-dust continuum ratio and Pa-α\alpha equivalent width. Within the nuclear region (radius\sim300 pc) and with a resolution of \sim34 pc, the CO line flux (dust flux density) detected in our ALMA observations is 180±18180\pm18 Jy km/s (71±771\pm7 mJy), which account for 22% (2.4%) of the total value measured by Herschel.Comment: Accepted for publication in Ap

    ALMA Observation of NGC5135: The Circumnuclear CO(6-5) and Dust Continuum Emission at 45 Parsec Resolution[\star]

    Get PDF
    We present high-resolution (0.17\arcsec ×\times 0.14\arcsec) Atacama Large Millimeter/submillimeter Array (ALMA) observations of the CO\,(6-5) line, and 435\um\ dust continuum emission within a \sim9\arcsec ×\times 9\arcsec\ area centered on the nucleus of the galaxy NGC\,5135. NGC\,5135 is a well-studied luminous infrared galaxy that also harbors a Compton-thick active galactic nucleus (AGN). At the achieved resolution of 48 ×\times 40\,pc, the CO\,(6-5) and dust emissions are resolved into gas "clumps" along the symmetrical dust lanes associated with the inner stellar bar. The clumps have radii between \sim45-180\,pc and CO\,(6-5) line widths of \sim60-88\,\kms. The CO\,(6-5) to dust continuum flux ratios vary among the clumps and show an increasing trend with the \FeII/Br-γ\gamma ratios, which we interpret as evidence for supernova-driven shocked gas providing a significant contribution to the \co65\ emission. The central AGN is undetected in continuum, nor in CO\,(6-5) if its line velocity width is no less than \sim\,40\,\kms. We estimate that the AGN contributes at most 1\% of the integrated CO\,(6-5) flux of 512 ±\pm 24\,Jy\kms\ within the ALMA field of view, which in turn accounts for \sim32\% of the CO\,(6-5) flux of the whole galaxy.Comment: 21 pages, 12 figures, Accepted for publication in Ap

    A controlled study of cold dust content in galaxies from z=02z=0-2

    Get PDF
    At z=13z=1-3, the formation of new stars is dominated by dusty galaxies whose far-IR emission indicates they contain colder dust than local galaxies of a similar luminosity. We explore the reasons for the evolving IR emission of similar galaxies over cosmic time using: 1) Local galaxies from GOALS (LIR=10111012L)(L_{\rm IR}=10^{11}-10^{12}\,L_\odot); 2) Galaxies at z0.10.5z\sim0.1-0.5 from the 5MUSES (LIR=10101012LL_{\rm IR}=10^{10}-10^{12}\,L_\odot); 3) IR luminous galaxies spanning z=0.53z=0.5-3 from GOODS and Spitzer xFLS (LIR>1011LL_{\rm IR}>10^{11}\,L_\odot). All samples have Spitzer mid-IR spectra, and Herschel and ground-based submillimeter imaging covering the full IR spectral energy distribution, allowing us to robustly measure LIRSFL_{\rm IR}^{\rm\scriptscriptstyle SF}, TdustT_{\rm dust}, and MdustM_{\rm dust} for every galaxy. Despite similar infrared luminosities, z>0.5z>0.5 dusty star forming galaxies have a factor of 5 higher dust masses and 5K colder temperatures. The increase in dust mass is linked with an increase in the gas fractions with redshift, and we do not observe a similar increase in stellar mass or star formation efficiency. L160SF/L70SFL_{160}^{\rm\scriptscriptstyle SF}/L_{70}^{\rm\scriptscriptstyle SF}, a proxy for TdustT_{\rm dust}, is strongly correlated with LIRSF/MdustL_{\rm IR}^{\rm\scriptscriptstyle SF}/M_{\rm dust} independently of redshift. We measure merger classification and galaxy size for a subsample, and there is no obvious correlation between these parameters and LIRSF/MdustL_{\rm IR}^{\rm \scriptscriptstyle SF}/M_{\rm dust} or L160SF/L70SFL_{160}^{\rm\scriptscriptstyle SF}/L_{70}^{\rm\scriptscriptstyle SF}. In dusty star forming galaxies, the change in LIRSF/MdustL_{\rm IR}^{\rm\scriptscriptstyle SF}/M_{\rm dust} can fully account for the observed colder dust temperatures, suggesting that any change in the spatial extent of the interstellar medium is a second order effect.Comment: Accepted for publication in ApJ. 21 pages, 11 figure

    Measuring Star-formation Rate and Far-Infrared Color in High-redshift Galaxies Using the CO (7-6) and [NII] 205 micron Lines

    Get PDF
    To better characterize the global star formation (SF) activity in a galaxy, one needs to know not only the star formation rate (SFR) but also the rest-frame, far-infrared (FIR) color (e.g., the 60-to-100 μ\mum color, C(60/100)C(60/100)] of the dust emission. The latter probes the average intensity of the dust heating radiation field and scales statistically with the effective SFR surface density in star-forming galaxies including (ultra-)luminous infrared galaxies [(U)LIRGs]. To this end, we exploit here a new spectroscopic approach involving only two emission lines: CO\,(7-6) at 372 μ\mum and [NII] at 205 μ\mum. For local (U)LIRGs, the ratios of the CO (7-6) luminosity (LCO(76)L_{\rm CO\,(7-6)}) to the total infrared luminosity (LIRL_{\rm IR}; 8-1000 μ\mum) are fairly tightly distributed (to within \sim0.12 dex) and show little dependence on C(60/100)C(60/100). This makes LCO(76)L_{\rm CO\,(7-6)} a good SFR tracer, which is less contaminated by active galactic nuclei (AGN) than LIRL_{\rm IR} and may also be much less sensitive to metallicity than LCO(10)L_{\rm CO\,(1-0)}. Furthermore, the logarithmic [NII] 205 μ\mum to CO (7-6) luminosity ratio is fairly steeply (at a slope of \sim1.4-1.4) correlated with C(60/100)C(60/100), with a modest scatter (\sim0.23 dex). This makes it a useful estimator on C(60/100)C(60/100) with an implied uncertainty of \sim0.15 [or \lesssim4 K in the dust temperature (TdustT_{\rm dust}) in the case of a graybody emission with Tdust30T_{\rm dust} \gtrsim 30 K and a dust emissivity index β1\beta \ge 1]. Our locally calibrated SFR and C(60/100)C(60/100) estimators are shown to be consistent with the published data of (U)LIRGs of zz up to \sim6.5.Comment: 6 pages, 3 figures, 1 table; accepted for publication in the ApJ Lette

    Warm H2_2 as a probe of massive accretion and feedback through shocks and turbulence across cosmic time

    Get PDF
    Galaxy formation depends on a complex interplay between gravitational collapse, gas accretion, merging, and feedback processes. Yet, after many decades of investigation, these concepts are poorly understood. This paper presents the argument that warm H2_2 can be used as a tool to unlock some of these mysteries. Turbulence, shocks and outflows, driven by star formation, AGN activity or inflows, may prevent the rapid buildup of star formation in galaxies. Central to our understanding of how gas is converted into stars is the process by which gas can dissipate its mechanical energy through turbulence and shocks in order to cool. H2_2 lines provide direct quantitative measurements of kinetic energy dissipation in molecular gas in galaxies throughout the Universe. Based on the detection of very powerful H2_2 lines from z = 2 galaxies and proto-clusters at the detection limits of {\it Spitzer}, we are confident that future far-IR and UV H2_2 observations will provide a wealth of new information and insight into galaxy evolution to high-z. Finally, at the very earliest epoch of star and galaxy formation, warm H2_2 may also provide a unique glimpse of molecular gas collapse at 7 << z << 12 in massive dark matter (DM) halos on their way to forming the very first galaxies. Such measurements are beyond the reach of existing and planned observatories.Comment: Submitted as a science White Paper to the Astronomy and Astrophysics Astro 2020 Decadal Survey call issued by the National Academies of Sciences, Engineering and Medicine (March 11 2019

    The [N II] 205μm Emission in Local Luminous Infrared Galaxies

    Get PDF
    In this paper, we present the measurements of the [N II] 205 μm line for a flux-limited sample of 122 (ultra-)luminous infrared galaxies [(U)LIRGs] and 20 additional normal galaxies, obtained with the Herschel Space Observatory (Herschel). We explore the far-infrared (FIR) color dependence of the [N II] 205 μm (L_([N II]205μm)) to the total infrared (L_(IR)) luminosity ratio, and find that L_([N II]205μm)/L_(IR) only depends modestly on the 70–160 μm flux density ratio (f_(70)/f_(160)) when f_(70)/f_(160) ≾ 0.6, whereas such dependence becomes much steeper for f_(70/f_(160) > 0.6. We also investigate the relation between L_([N II]205μm) and star formation rate (SFR), and show that L_([N II]205μm) has a nearly linear correlation with SFR, albeit the intercept of such a relation varies somewhat with f_(60)/f_(100), consistent with our previous conclusion that [N II] 205 μm emission can serve as an SFR indicator with an accuracy of ~0.4 dex, or ~0.2 dex if f_(60)/f_(100) is known independently. Furthermore, together with the Infrared Space Observatory measurements of [N II], we use a total of ~200 galaxies to derive the local [N II] 205 μm luminosity function (LF) by tying it to the known IR LF with a bivariate method. As a practical application, we also compute the local SFR volume density (ṗ_(SFR)) using the newly derived SFR calibrator and LF. The resulting log ṗ_(SFR) = -1.96 ± 0.11 M_☉ yr^(−1) Mpc^(−3) agrees well with previous studies. Finally, we determine the electron densities (n_e) of the ionized medium for a subsample of 12 (U)LIRGs with both [N II] 205 μm and [N II] 122 μm data, and find that n_e is in the range of ~1–100 cm^(−3), with a median value of 22 cm^(−3)

    Jography: Exploring meanings, experiences and spatialities of recreational road-running

    Get PDF
    Jogging is a relatively under-researched mobile practice with much existing literature focusing on ‘serious’ and competitive running. In this paper, we provide an account of some of the movements, meanings and experiences that together help produce the practice of jogging in the south-western English city of Plymouth. Drawing upon participant diaries and interviews, we uncover rich detail about how joggers ascribe not one but a number of meanings to their practice. Some of these are positive, some are negative; some complement each other and some compete with each other. We also consider how the experiences of joggers can be shaped by their ongoing need to develop tactics capable of enabling them to negotiate space with non-joggers. This is in some contrast to more competitive running that occurs in the separated space of an athletics track. Our sense is that better awareness of the meanings and experiences of jogging will be of value if the advertised health and sustainability benefits of the practice are to be more effectively encouraged and promoted

    ALMA Imaging of the CO(7-6) Line Emission in the Submillimeter Galaxy LESS 073 at redshift 4.755^\star

    Full text link
    In this paper we present our imaging observations on the CO(7-6) line and its underlying continuum emission of the young submillimeter galaxy LESS 073 at redshift 4.755, using the Atacama Large Millimeter/submillimeter Array (ALMA). At the achieved resolution of \sim1.2×0.91^{\prime\prime}.2\times0^{\prime\prime}.9 (8×68\times6~kpc2^2), the CO(7-6) emission is largely unresolved (with a deconvolved size of 1.1(±0.5)×0.9(±0.8)1^{\prime\prime}.1(\pm0^{\prime\prime}.5) \times 0^{\prime\prime}.9(\pm0^{\prime\prime}.8)), and the continuum emission is totally unresolved. The CO(7-6) line emission has an integrated flux of 0.86±0.080.86\pm0.08~Jy km/s, and a line width of 343±40343\pm40 km/s. The continuum emission has a flux density of 0.51 mJy. By fitting the observed far-infrared (FIR) spectral energy distribution of LESS 073 with a single-temperature modified blackbody function, we obtained a dust temperature Tdust=57.6±3.5T_{\rm dust}=57.6\pm3.5 K, 60-to-100 μ\mum flux density ratio f60/f100=0.86±0.08f_{60}/f_{100}=0.86\pm0.08, and total infrared luminosity LIR=(5.8±0.9)×1012 LL_{\rm IR}=(5.8\pm0.9) \times 10^{12}~L_\odot. The SED-fit-based f60/f100f_{60}/f_{100} is consistent with those estimated from various line ratios as advocated by our earlier work, indicating that those proposed line-ratio-based method can be used to practically derive f60/f100f_{60}/f_{100} for high-zz sources. The total molecular gas mass of LESS 073 is (3.3±1.7)×1010 M(3.3\pm1.7) \times10^{10}~M_\odot, and the inferred gas depletion time is about 43 Myr.Comment: 8 pages, 6 figures, accepted for publication in Ap
    corecore