31 research outputs found

    Die Rolle unterschiedlicher Mastzellsubtypen im Rahmen der intestinalen Karzinogenese

    Get PDF

    Neuroendocrine Differentiation in Conventional Colorectal Adenocarcinomas: Incidental Finding or Prognostic Biomarker?

    Get PDF
    Background Colorectal mixed adenoneuroendocrine carcinomas (MANECs) are clinically highly aggressive neoplasms. MANECs are composed of variable adenocarcinoma components combined with morphologically distinct neuroendocrine carcinoma components, which are confirmed by synaptophysin immunohistochemistry, the gold standard marker of a neuroendocrine differentiation. However, the biological behavior of adenocarcinomas that express synaptophysin but do not show a typical neuroendocrine morphology remains unclear. Methods We investigated synaptophysin expression in 1002 conventional colorectal adenocarcinomas and correlated the results with clinicopathological characteristics and patient survival and compared the survival characteristics of synaptophysin expression groups to MANECs. Results Synaptophysin expression in conventional colorectal adenocarcinomas was associated with a shortened disease-free survival (p = 0.037), but not with overall survival or disease-specific survival (DSS) in univariate analyses and without any survival impact in multivariate analyses. Patients with "true" MANECs, on the other hand, showed a significantly shorter survival than all conventional adenocarcinomas with or without synaptophysin expression in uni- and multivariate analyses (e.g., multivariate DSS: p < 0.001, HR: 5.20). Conclusions Our study demonstrates that synaptophysin expression in conventional colorectal adenocarcinomas, in contrast to MANECs, is not associated with a significantly poorer clinical outcome when compared to adenocarcinomas without synaptophysin expression. Furthermore, our data suggest that conventional adenocarcinomas with a diffuse synaptophysin expression should not be classified as MANECs, also strongly arguing that synaptophysin testing should be reserved for carcinomas with an H&E morphology suggestive of a neuroendocrine differentiation.Simple Summary Colorectal MANECs are highly aggressive carcinomas defined by a distinct neuroendocrine morphology and positivity for synaptophysin in the neuroendocrine component. It is unclear whether a neuroendocrine differentiation in conventional adenocarcinomas without a suggestive morphology is of clinical relevance. We tested 1002 conventional colorectal carcinomas with a non-neuroendocrine morphology for synaptophysin expression and correlated the results with clinicopathological characteristics as well as patient survival and compared the survival characteristics of synaptophysin expression groups to those of true MANECs. We found no survival differences between synaptophysin expression groups within conventional colorectal adenocarcinomas. MANECs, on the other hand, showed significantly worse survival characteristics. Our data suggest that synaptophysin expression in conventional colorectal adenocarcinomas is of minor prognostic relevance and that conventional adenocarcinomas with a diffuse synaptophysin expression should not be classified as MANECs. Abstract Background: Colorectal mixed adenoneuroendocrine carcinomas (MANECs) are clinically highly aggressive neoplasms. MANECs are composed of variable adenocarcinoma components combined with morphologically distinct neuroendocrine carcinoma components, which are confirmed by synaptophysin immunohistochemistry, the gold standard marker of a neuroendocrine differentiation. However, the biological behavior of adenocarcinomas that express synaptophysin but do not show a typical neuroendocrine morphology remains unclear. Methods: We investigated synaptophysin expression in 1002 conventional colorectal adenocarcinomas and correlated the results with clinicopathological characteristics and patient survival and compared the survival characteristics of synaptophysin expression groups to MANECs. Results: Synaptophysin expression in conventional colorectal adenocarcinomas was associated with a shortened disease-free survival (p = 0.037), but not with overall survival or disease-specific survival (DSS) in univariate analyses and without any survival impact in multivariate analyses. Patients with “true” MANECs, on the other hand, showed a significantly shorter survival than all conventional adenocarcinomas with or without synaptophysin expression in uni- and multivariate analyses (e.g., multivariate DSS: p < 0.001, HR: 5.20). Conclusions: Our study demonstrates that synaptophysin expression in conventional colorectal adenocarcinomas, in contrast to MANECs, is not associated with a significantly poorer clinical outcome when compared to adenocarcinomas without synaptophysin expression. Furthermore, our data suggest that conventional adenocarcinomas with a diffuse synaptophysin expression should not be classified as MANECs, also strongly arguing that synaptophysin testing should be reserved for carcinomas with an H&E morphology suggestive of a neuroendocrine differentiation

    pT3 colorectal cancer revisited: a multicentric study on the histological depth of invasion in more than 1000 pT3 carcinomas—proposal for a new pT3a/pT3b subclassification

    Get PDF
    BACKGROUND: Pathological TNM staging (pTNM) is the strongest prognosticator in colorectal carcinoma (CRC) and the foundation of its post-operative clinical management. Tumours that invade pericolic/perirectal adipose tissue generally fall into the pT3 category without further subdivision. METHODS: The histological depth of invasion into the pericolic/perirectal fat was digitally and conventionally measured in a training cohort of 950 CRCs (Munich). We biostatistically calculated the optimal cut-off to stratify pT3 CRCs into novel pT3a (≤3 mm)/pT3b (>3 mm) subgroups, which were then validated in two independent cohorts (447 CRCs, Bayreuth/542 CRCs, Mainz). RESULTS: Compared to pT3a tumours, pT3b CRCs showed significantly worse disease-specific survival, including in pN0 vs pN+ and colonic vs. rectal cancers (DSS: P < 0.001, respectively, pooled analysis of all cohorts). Furthermore, the pT3a/pT3b subclassification remained an independent predictor of survival in multivariate analyses (e.g. DSS: P < 0.001, hazard ratio: 4.41 for pT3b, pooled analysis of all cohorts). While pT2/pT3a CRCs showed similar survival characteristics, pT3b cancers remained a distinct subgroup with dismal survival. DISCUSSION: The delineation of pT3a/pT3b subcategories of CRC based on the histological depth of adipose tissue invasion adds valuable prognostic information to the current pT3 classification and implementation into current staging practices of CRC should be considered

    CARs derived from broadly neutralizing, human monoclonal antibodies identified by single B cell sorting target hepatitis B virus-positive cells

    Get PDF
    To design new CARs targeting hepatitis B virus (HBV), we isolated human monoclonal antibodies recognizing the HBV envelope proteins from single B cells of a patient with a resolved infection. HBV-specific memory B cells were isolated by incubating peripheral blood mononuclear cells with biotinylated hepatitis B surface antigen (HBsAg), followed by single-cell flow cytometry-based sorting of live, CD19+ IgG+ HBsAg+ cells. Amplification and sequencing of immunoglobulin genes from single memory B cells identified variable heavy and light chain sequences. Corresponding immunoglobulin chains were cloned into IgG1 expression vectors and expressed in mammalian cells. Two antibodies named 4D06 and 4D08 were found to be highly specific for HBsAg, recognized a conformational and a linear epitope, respectively, and showed broad reactivity and neutralization capacity against all major HBV genotypes. 4D06 and 4D08 variable chain fragments were cloned into a 2nd generation CAR format with CD28 and CD3zeta intracellular signaling domains. The new CAR constructs displayed a high functional avidity when expressed on primary human T cells. CAR-grafted T cells proved to be polyfunctional regarding cytokine secretion and killed HBV-positive target cells. Interestingly, background activation of the 4D08-CAR recognizing a linear instead of a conformational epitope was consistently low. In a preclinical model of chronic HBV infection, murine T cells grafted with the 4D06 and the 4D08 CAR showed on target activity indicated by a transient increase in serum transaminases, and a lower number of HBV-positive hepatocytes in the mice treated. This study demonstrates an efficient and fast approach to identifying pathogen-specific monoclonal human antibodies from small donor cell numbers for the subsequent generation of new CARs

    pT3 colorectal cancer revisited: a multicentric study on the histological depth of invasion in more than 1000 pT3 carcinomas—proposal for a new pT3a/pT3b subclassification

    Get PDF
    Background Pathological TNM staging (pTNM) is the strongest prognosticator in colorectal carcinoma (CRC) and the foundation of its post-operative clinical management. Tumours that invade pericolic/perirectal adipose tissue generally fall into the pT3 category without further subdivision. Methods The histological depth of invasion into the pericolic/perirectal fat was digitally and conventionally measured in a training cohort of 950 CRCs (Munich). We biostatistically calculated the optimal cut-off to stratify pT3 CRCs into novel pT3a (≤3 mm)/pT3b (>3 mm) subgroups, which were then validated in two independent cohorts (447 CRCs, Bayreuth/542 CRCs, Mainz). Results Compared to pT3a tumours, pT3b CRCs showed significantly worse disease-specific survival, including in pN0 vs pN+ and colonic vs. rectal cancers (DSS: P  < 0.001, respectively, pooled analysis of all cohorts). Furthermore, the pT3a/pT3b subclassification remained an independent predictor of survival in multivariate analyses (e.g. DSS: P  < 0.001, hazard ratio: 4.41 for pT3b, pooled analysis of all cohorts). While pT2/pT3a CRCs showed similar survival characteristics, pT3b cancers remained a distinct subgroup with dismal survival. Discussion The delineation of pT3a/pT3b subcategories of CRC based on the histological depth of adipose tissue invasion adds valuable prognostic information to the current pT3 classification and implementation into current staging practices of CRC should be considered

    Adoptive T Cell Therapy Is Complemented by Oncolytic Virotherapy with Fusogenic VSV-NDV in Combination Treatment of Murine Melanoma

    No full text
    Cancer immunotherapies have made major advancements in recent years and are becoming the prevalent treatment options for numerous tumor entities. However, substantial response rates have only been observed in specific subsets of patients since pre-existing factors determine the susceptibility of a tumor to these therapies. The development of approaches that can actively induce an anti-tumor immune response, such as adoptive cell transfer and oncolytic virotherapy, have shown clinical success in the treatment of leukemia and melanoma, respectively. Based on the immune-stimulatory capacity of oncolytic VSV-NDV virotherapy, we envisioned a combination approach to synergize with adoptive T cell transfer, in order to enhance tumor cell killing. Using the immune-competent B16 melanoma model, we demonstrate that combination treatment has beneficial effects on the suppressive microenvironment through upregulation of MHC-I and maintaining low expression levels of PD-L1 on tumor cells. The approach led to additive cytotoxic effects and improved the recruitment of T cells to virus-infected tumor cells in vitro and in vivo. We observed substantial delays in tumor growth and evidence of abscopal effects, as well as prolongation of overall survival time when administered at clinically relevant dosing conditions. Our results indicate that treatment with oncolytic VSV-NDV, combined with adoptive T cell therapy, induces multi-mechanistic and synergistic tumor responses, which supports the further development of this promising translational approach.</jats:p

    Unraveling the Molecular Basis of Substrate Specificity and Halogen Activation in Vanadium-Dependent Haloperoxidases

    No full text
    Vanadium-dependent haloperoxidases (VHPOs) are biotechnologically valuable and operationally versatile biocatalysts that do not require complex electron shuttling systems. These enzymes share remarkable active-site structural similarities yet display broadly variable reactivity and selectivity. The factors dictating substrate and halogen specificity and, thus, a general understanding of VHPO reaction control still need to be discovered. This work\u27s strategic single-point mutation in the cyanobacterial bromoperoxidase AmVHPO facilitates a selectivity switch to allow aryl chlorination. This mutation induces loop formation absent in the wild-type enzyme, and that interacts with the neighboring protein monomer, creating a tunnel to the active sites. Structural analysis of the substrate-R425S-mutant complex reveals a substrate-binding site at the interface of two adjacent units. There, residues Glu139 and Phe401 interact with arenes, extending the substrate residence time close to the vanadate cofactor and stabilizing intermediates. Our findings validate the long-debated existence of direct substrate binding and provide detailed VHPO mechanistic understanding. This work will thus pave the way for a broader application of VHPOs in diverse chemical processes

    Histomorphological scoring of murine colitis models: A practical guide for the evaluation of colitis and colitis-associated cancer

    No full text
    Background and aims: Histomorphology is a powerful and cost-efficient tool for evaluating inflammatory and neoplastic conditions. Inflammatory bowel disease (IBD) is a widespread condition with globally rising incidences, and a lot of research is done to better understand the pathogenesis of IBD and to identify potential therapeutic approaches. However, standardized and reproducible scores for the histomorphological evaluation of murine IBD models are lacking. Therefore, we aimed to develop an easy-to-use and reproducible score for standardized assessment of colitis and associated cancer models. Methods: In this study, samples from three different colitis models with and without associated cancer formation were analyzed to develop a universal, robust, and reproducible score for the grading of murine colitis models using the following three parameters: 1. Extent of leucocyte infiltration, 2. Tissue damage, 3. Architectural disruption of the mucosa. Results: A scoring system was established for different kinds of colitis models (genetically induced enterocolitis, genetically induced metabolic injury, and chemically induced colitis-associated cancer) and all stages of the disease, from mild inflammatory changes to severe inflammation with neoplastic changes as the extreme extent of IBD. The scoring scheme is easy to use, can easily be learned, and proves to have a high interrater reliability. Conclusions: We propose a robust histological scoring system for the assessment of murine colitis and colitis-associated cancer models, giving more researchers access to conclusive and reliable histological assessment

    There is a world beyond αvβ3-integrin: Multimeric ligands for imaging of the integrin subtypes αvβ6, αvβ8, αvβ3, and α5β1 by positron emission tomography

    No full text
    AbstractBackgroundIn the context of nuclear medicine and theranostics, integrin-related research and development was, for most of the time, focused predominantly on 'RGD peptides' and the subtype αvβ3-integrin. However, there are no less than 24 known integrins, and peptides without the RGD sequence as well as non-peptidic ligands play an equally important role as selective integrin ligands. On the other hand, multimerization is a well-established method to increase the avidity of binding structures, but multimeric radiopharmaceuticals have not made their way into clinics yet. In this review, we describe how these aspects have been interwoven in the framework of the German Research Foundation's multi-group interdisciplinary funding scheme CRC 824, yielding a series of potent PET imaging agents for selective imaging of various integrin subtypes.ResultsThe gallium-68 chelator TRAP was utilized to elaborate symmetrical trimers of various peptidic and non-peptidic integrin ligands. Preclinical data suggested a high potential of the resulting Ga-68-tracers for PET-imaging of the integrins α5β1, αvβ8, αvβ6, and αvβ3. For the first three, we provide some additional immunohistochemistry data in human cancers, which suggest several future clinical applications. Finally, application of αvβ3- and αvβ6-integrin tracers in pancreatic carcinoma patients revealed that unlike αvβ3-targeted PET, αvβ6-integrin PET is not characterized by off-target uptake and thus, enables a substantially improved imaging of this type of cancer.ConclusionsNovel radiopharmaceuticals targeting a number of different integrins, above all, αvβ6, have proven their clinical potential and will play an increasingly important role in future theranostics.</jats:sec
    corecore