441 research outputs found

    Improved Frechet bounds and model-free pricing of multi-asset options

    Full text link
    Improved bounds on the copula of a bivariate random vector are computed when partial information is available, such as the values of the copula on a given subset of [0,1]2[0,1]^2, or the value of a functional of the copula, monotone with respect to the concordance order. These results are then used to compute model-free bounds on the prices of two-asset options which make use of extra information about the dependence structure, such as the price of another two-asset option.Comment: Replaced with revised versio

    Tail behavior of sums and differences of log-normal random variables

    Full text link
    We present sharp tail asymptotics for the density and the distribution function of linear combinations of correlated log-normal random variables, that is, exponentials of components of a correlated Gaussian vector. The asymptotic behavior turns out to depend on the correlation between the components, and the explicit solution is found by solving a tractable quadratic optimization problem. These results can be used either to approximate the probability of tail events directly, or to construct variance reduction procedures to estimate these probabilities by Monte Carlo methods. In particular, we propose an efficient importance sampling estimator for the left tail of the distribution function of the sum of log-normal variables. As a corollary of the tail asymptotics, we compute the asymptotics of the conditional law of a Gaussian random vector given a linear combination of exponentials of its components. In risk management applications, this finding can be used for the systematic construction of stress tests, which the financial institutions are required to conduct by the regulators. We also characterize the asymptotic behavior of the Value at Risk for log-normal portfolios in the case where the confidence level tends to one.Comment: Published at http://dx.doi.org/10.3150/14-BEJ665 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Market models with optimal arbitrage

    Full text link
    We construct and study market models admitting optimal arbitrage. We say that a model admits optimal arbitrage if it is possible, in a zero-interest rate setting, starting with an initial wealth of 1 and using only positive portfolios, to superreplicate a constant c>1. The optimal arbitrage strategy is the strategy for which this constant has the highest possible value. Our definition of optimal arbitrage is similar to the one in Fernholz and Karatzas (2010), where optimal relative arbitrage with respect to the market portfolio is studied. In this work we present a systematic method to construct market models where the optimal arbitrage strategy exists and is known explicitly. We then develop several new examples of market models with arbitrage, which are based on economic agents' views concerning the impossibility of certain events rather than ad hoc constructions. We also explore the concept of fragility of arbitrage introduced in Guasoni and Rasonyi (2012), and provide new examples of arbitrage models which are not fragile in this sense

    Asymptotically optimal discretization of hedging strategies with jumps

    Full text link
    In this work, we consider the hedging error due to discrete trading in models with jumps. Extending an approach developed by Fukasawa [In Stochastic Analysis with Financial Applications (2011) 331-346 Birkh\"{a}user/Springer Basel AG] for continuous processes, we propose a framework enabling us to (asymptotically) optimize the discretization times. More precisely, a discretization rule is said to be optimal if for a given cost function, no strategy has (asymptotically, for large cost) a lower mean square discretization error for a smaller cost. We focus on discretization rules based on hitting times and give explicit expressions for the optimal rules within this class.Comment: Published in at http://dx.doi.org/10.1214/13-AAP940 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Small-time asymptotics of stopped L\'evy bridges and simulation schemes with controlled bias

    Full text link
    We characterize the small-time asymptotic behavior of the exit probability of a L\'evy process out of a two-sided interval and of the law of its overshoot, conditionally on the terminal value of the process. The asymptotic expansions are given in the form of a first-order term and a precise computable error bound. As an important application of these formulas, we develop a novel adaptive discretization scheme for the Monte Carlo computation of functionals of killed L\'evy processes with controlled bias. The considered functionals appear in several domains of mathematical finance (e.g., structural credit risk models, pricing of barrier options, and contingent convertible bonds) as well as in natural sciences. The proposed algorithm works by adding discretization points sampled from the L\'evy bridge density to the skeleton of the process until the overall error for a given trajectory becomes smaller than the maximum tolerance given by the user.Comment: Published in at http://dx.doi.org/10.3150/13-BEJ517 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
    corecore