440 research outputs found
Non-invasive Evaluation of Aortic Stiffness Dependence with Aortic Blood Pressure and Internal Radius by Shear Wave Elastography and Ultrafast Imaging
Elastic properties of arteries have long been recognized as playing a major
role in the cardiovascular system. However, non-invasive in vivo assessment of
local arterial stiffness remains challenging and imprecise as current
techniques rely on indirect estimates such as wall deformation or pulse wave
velocity. Recently, Shear Wave Elastography (SWE) has been proposed to
non-invasively assess the intrinsic arterial stiffness. In this study, we
applied SWE in the abdominal aortas of rats while increasing blood pressure
(BP) to investigate the dependence of shear wave speed with invasive arterial
pressure and non-invasive arterial diameter measurements. A 15MHz linear array
connected to an ultrafast ultrasonic scanner, set non-invasively, on the
abdominal aorta of anesthetized rats (N=5) was used. The SWE acquisition
followed by an ultrafast (UF) acquisition was repeated at different moment of
the cardiac cycle to assess shear wave speed and arterial diameter variations
respectively. Invasive arterial BP catheter placed in the carotid, allowed the
accurate measurement of pressure responses to increasing does of phenylephrine
infused via a venous catheter. The SWE acquisition coupled to the UF
acquisition was repeated for different range of pressure. For normal range of
BP, the shear wave speed was found to follow the aortic BP variation during a
cardiac cycle. A minimum of (5.060.82) m/s during diastole and a maximum
of (5.970.90) m/s during systole was measured. After injection of
phenylephrine, a strong increase of shear wave speed (13.855.51) m/s was
observed for a peak systolic arterial pressure of (19010) mmHg. A
non-linear relationship between shear wave speed and arterial BP was found. A
complete non-invasive method was proposed to characterize the artery with shear
wave speed combined with arterial diameter variations. Finally, the results
were validated against two parameters the incremental elastic modulus and the
pressure elastic modulus derived from BP and arterial diameter variations
In vivo cervical intervertebral disc characterisation by elastography.
PublishedJournal ArticleThis is an Accepted Manuscript of an article published by Taylor & Francis in Computer Methods in Biomechanics and Biomedical Engineering on 30/07/2014, available online: http://www.tandfonline.com/10.1080/10255842.2014.931515Not availableParisTech BiomecAM chair programProteorSociété GénéraleCoveaParisTechYves Cotrel Foundation
Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging
The assessment of disrupted myocardial fiber arrangement may help to understand and diagnose hypertrophic or ischemic cardiomyopathy. We hereby proposed and developed shear wave imaging (SWI), which is an echocardiography-based, noninvasive, real-time, and easy-to-use technique, to map myofiber orientation. Five in vitro porcine and three in vivo open-chest ovine hearts were studied. Known in physics, shear wave propagates faster along than across the fiber direction. SWI is a technique that can generate shear waves travelling in different directions with respect to each myocardial layer. SWI further analyzed the shear wave velocity across the entire left-ventricular (LV) myocardial thickness, ranging between 10 (diastole) and 25 mm (systole), with a resolution of 0.2 mm in the middle segment of the LV anterior wall region. The fiber angle at each myocardial layer was thus estimated by finding the maximum shear wave speed. In the in vitro porcine myocardium (n=5), the SWI-estimated fiber angles gradually changed from +80° ± 7° (endocardium) to +30° ± 13° (midwall) and-40° ± 10° (epicardium) with 0° aligning with the circumference of the heart. This transmural fiber orientation was well correlated with histology findings (r2=0.91± 0.02, p<0.0001). SWI further succeeded in mapping the transmural fiber orientation in three beating ovine hearts in vivo. At midsystole, the average fiber orientation exhibited 71° ± 13° (endocardium), 27° ± 8° (midwall), and-26° ± 30° (epicardium). We demonstrated the capability of SWI in mapping myocardial fiber orientation in vitro and in vivo. SWI may serve as a new tool for the noninvasive characterization of myocardial fiber structure. © 2012 IEEE.published_or_final_versio
A Universal Model of Global Civil Unrest
Civil unrest is a powerful form of collective human dynamics, which has led
to major transitions of societies in modern history. The study of collective
human dynamics, including collective aggression, has been the focus of much
discussion in the context of modeling and identification of universal patterns
of behavior. In contrast, the possibility that civil unrest activities, across
countries and over long time periods, are governed by universal mechanisms has
not been explored. Here, we analyze records of civil unrest of 170 countries
during the period 1919-2008. We demonstrate that the distributions of the
number of unrest events per year are robustly reproduced by a nonlinear,
spatially extended dynamical model, which reflects the spread of civil disorder
between geographic regions connected through social and communication networks.
The results also expose the similarity between global social instability and
the dynamics of natural hazards and epidemics.Comment: 8 pages, 3 figure
Non-invasive biomechanical characterization of intervertebral discs by shear wave ultrasound elastography: a feasibility study.
PublishedJournal ArticleThe final publication is available at Springer via http://dx.doi.org/10.1007/s00330-014-3382-8OBJECTIVES: Although magnetic resonance is widely spread to assess qualitatively disc morphology, a simple method to determine reliably intervertebral disc status is still lacking. Shear wave elastography is a novel technique that allows quantitative evaluation of soft-tissues' mechanical properties. The aim of this study was to assess preliminary the feasibility and reliability of mechanical characterization of cervical intervertebral discs by elastography and to provide first reference values for asymptomatic subjects. METHODS: Elastographic measurements were performed to determine shear wave speed (SWS) in C6-C7 or C7-T1 disc of 47 subjects; repeatability and inter-operator reproducibility were assessed. RESULTS: Global average shear wave speed (SWS) was 3.0 ± 0.4 m/s; measurement repeatability and inter-user reproducibility were 7 and 10%, respectively. SWS was correlated with both subject's age (p = 1.3 × 10(-5)) and body mass index (p = 0.008). CONCLUSIONS: Shear wave elastography in intervertebral discs proved reliable and allowed stratification of subjects according to age and BMI. Applications could be relevant, for instance, in early detection of disc degeneration or in follow-up after trauma; these results open the way to larger cohort studies to define the place of this technique in routine intervertebral disc assessment. KEY POINTS: A simple method to obtain objectively intervertebral disc status is still lacking. Shear wave elastography was applied in vivo to assess intervertebral discs. Elastography showed promising results in biomechanical disc evaluation. Elastography could be relevant in clinical routine for intervertebral disc assessment.ParisTech BiomecAM chair programParisTechYves Cotrel FoundationsSociété GénéraleProteorCove
Intervertebral disc characterization by shear wave elastography: An in vitro preliminary study.
Published onlineJOURNAL ARTICLEAuthor's accepted (post-print) manuscriptThe final version of record is available at http://dx.doi.org/10.1177/0954411914540279Patient-specific numerical simulation of the spine is a useful tool both in clinic and research. While geometrical personalization of the spine is no more an issue, thanks to recent technological advances, non-invasive personalization of soft tissue's mechanical properties remains a challenge. Ultrasound elastography is a relatively recent measurement technique allowing the evaluation of soft tissue's elastic modulus through the measurement of shear wave speed. The aim of this study was to determine the feasibility of elastographic measurements in intervertebral disc. An in vitro approach was chosen to test the hypothesis that shear wave speed can be used to evaluate intervertebral disc mechanical properties and to assess measurement repeatability. In total, 11 oxtail intervertebral discs were tested in compression to determine their stiffness and apparent elastic modulus at rest and at 400 N. Elastographic measurements were performed in these two conditions and compared to these mechanical parameters. The protocol was repeated six times to determine elastographic measurement repeatability. Average shear wave speed over all samples was 5.3 ± 1.0 m/s, with a repeatability of 7% at rest and 4.6% at 400 N; stiffness and apparent elastic modulus were 266.3 ± 70.5 N/mm and 5.4 ± 1.1 MPa at rest, respectively, while at 400 N they were 781.0 ± 153.8 N/mm and 13.2 ± 2.4 MPa, respectively. Correlations were found between elastographic measurements and intervertebral disc mechanical properties; these preliminary results are promising for further in vivo application.ParisTech BiomecAM chair programProteorParisTechYves Cotrel Foundation
Exploiting disorder for perfect focusing
We demonstrate experimentally that disordered scattering can be used to
improve, rather than deteriorate, the focusing resolution of a lens. By using
wavefront shaping to compensate for scattering, light was focused to a spot as
small as one tenth of the diffraction limit of the lens. We show both
experimentally and theoretically that it is the scattering medium, rather than
the lens, that determines the width of the focus. Despite the disordered
propagation of the light, the profile of the focus was always exactly equal to
the theoretical best focus that we derived.Comment: 4 pages, 4 figure
Imaging the effect of acoustically induced cavitation bubbles on the generation of shear-waves by ultrasonic radiation force
In soft solids, the acoustic radiation force on bubbles generates a shear wave. This bubble-based shear wave can be imaged using high frame rate ultrasound imaging. We report here an experiment where cavitation is induced in a tissue mimicking material by an ultrasonic tone-burst excitation, which also pushes the bubbles. The generated shear wave was imaged and the energy backscattered by the bubbles measured. The tone burst excitation was iterated at the same location and the decrease of both the amplitude of the particle velocity induced by the shear wave and the backscattered energy was shown. Data treatment to extract the bubbles' contribution to this two quantities, and a simple theoretical model allowed us to point out their linear dependence.http://deepblue.lib.umich.edu/bitstream/2027.42/84304/1/CAV2009-final129.pd
Acoustically induced and controlled micro-cavitation bubbles as active source for transcranial adaptive focusing
The skull bone is a strong aberrating medium for ultrasound in the low MHz range. Brain treatment with High Intensity Focused Ultrasound (HIFU) can however be achieved through the skull by multichannel arrays using an adaptive focusing technique. Time-reversal is a robust adaptive technique for correction of aberrations. It achieves moreover a matched filter and then allows the optimal energy concentration for thermal therapy. Nevertheless, this method requires a reference signal sent by a source embedded in brain tissues. Acoustically generated cavitation bubbles are active acoustic sources which can be remotely generated. Therefore, they are suited for this non-invasive time reversal aberration correction. We report here in vitro experiments where micro-cavitation was induced transcranially in agar gel at targeted positions using a coarse aberration correction either obtained from CT-scan based simulations or conventional steering. The bubbles' ultrasonic signature received by the array were then successfully used to optimally focus at the designated locations.http://deepblue.lib.umich.edu/bitstream/2027.42/84308/1/CAV2009-final134.pd
- …
