60 research outputs found

    Diversity of immunoglobulin light chain genes in non-teleost ray-finned fish uncovers IgL subdivision into five ancient isotypes

    Get PDF
    <p>The aim of this study was to fill important gaps in the evolutionary history of immunoglobulins by examining the structure and diversity of IgL genes in non-teleost ray-finned fish. First, based on the bioinformatic analysis of recent transcriptomic and genomic resources, we experimentally characterized the IgL genes in the chondrostean fish, Acipenser ruthenus (sterlet). We show that this species has three loci encoding IgL kappa-like chains with a translocon-type gene organization and a single VJC cluster, encoding homogeneous lambda-like light chain. In addition, sterlet possesses sigma-like VL and J-CL genes, which are transcribed separately and both encode protein products with cleavable leader peptides. The Acipenseriformes IgL dataset was extended by the sequences mined in the databases of species belonging to other non-teleost lineages of ray-finned fish: Holostei and Polypteriformes. Inclusion of these new data into phylogenetic analysis showed a clear subdivision of IgL chains into five groups. The isotype described previously as the teleostean IgL lambda turned out to be a kappa and lambda chain paralog that emerged before the radiation of ray-finned fish. We designate this isotype as lambda-2. The phylogeny also showed that sigma-2 IgL chains initially regarded as specific for cartilaginous fish are present in holosteans, polypterids, and even in turtles. We conclude that there were five ancient IgL isotypes, which evolved differentially in various lineages of jawed vertebrates.</p

    Radiobiological response of U251MG, CHO-K1 and V79 cell lines to accelerator-based boron neutron capture therapy

    Get PDF
    In the current article, we provide in vitro efficacy evaluation of a unique accelerator-based neutron source, constructed at the Budker Institute of Nuclear Physics (Novosibirsk, Russian Federation), for boron neutron capture therapy (BNCT), which is particularly effective in the case of invasive cancers. U251MG, CHO-K1 and V79 cells were incubated and irradiated in various concentrations of boric acid with epithermal neutrons for 2–3 h in a plexiglass phantom, using 2.0 MeV proton energy and 1.5–3.0 mA proton current, resulting in a neutron fluence of 2.16 × 1012 cm−2. The survival curves of cells loaded with boron were normalized to those irradiated without boron (to exclude the influence of the fast neutron and gamma dose components) and fit to the linear–quadratic (LQ) model. Colony formation assays showed the following cell survival rates (means ± SDs): CHO-K1: 0.348 ± 0.069 (10 ppm), 0.058 ± 0.017 (20 ppm), 0.018 ± 0.005 (40 ppm); V79: 0.476 ± 0.160 (10 ppm), 0.346 ± 0.053 (20 ppm), 0.078 ± 0.015 (40 ppm); and U251MG: 0.311 ± 0.061 (10 ppm), 0.131 ± 0.022 (20 ppm), 0.020 ± 0.010 (40 ppm). The difference between treated cells and controls was significant in all cases (P < 0.01) and confirmed that the neutron source and irradiation regimen were sufficient for control over cell colony formation. We believe our study will serve as a model for ongoing in vitro experiments on neutron capture therapy to advance in this area for further development of accelerator-based BNCT into the clinical phase

    Comparative Pre-Clinical Analysis of CD20-Specific CAR T Cells Encompassing 1F5-, Leu16-, and 2F2-Based Antigen-Recognition Moieties

    No full text
    Over the past decade, CAR T cell therapy for patients with B cell malignancies has evolved from an experimental technique to a clinically feasible option. To date, four CAR T cell products specific for a B cell surface marker, CD19, have been approved by the FDA. Despite the spectacular rates of complete remission in r/r ALL and NHL patients, a significant proportion of patients still relapse, frequently with the CD19 low/negative tumor phenotype. To address this issue, additional B cell surface molecules such as CD20 were proposed as targets for CAR T cells. Here, we performed a side-by-side comparison of the activity of CD20-specific CAR T cells based on the antigen-recognition modules derived from the murine antibodies, 1F5 and Leu16, and from the human antibody, 2F2. Whereas CD20-specific CAR T cells differed from CD19-specific CAR T cells in terms of subpopulation composition and cytokine secretion, they displayed similar in vitro and in vivo potency.</jats:p

    Horses for Courses in the Era of CARs: Advancing CAR T and CAR NK Cell Therapies

    No full text
    The adoptive transfer of allogeneic CAR NK cells holds great promise as an anticancer modality due to the relative ease of manufacturing and genetic modification of NK cells, which translates into affordable pricing. Compared to the pronounced efficacy of CAR T cell therapy in the treatment of B cell malignancies, rigorous clinical and preclinical assessment of the antitumor properties of CAR NK cells has been lagging behind. In this brief review, we summarize the biological features of NK cells that may help define the therapeutic niche of CAR NK cells as well as create more potent NK cell-based anticancer products. In addition, we compare T cells and NK cells as the carriers of CARs using the data of single-cell transcriptomic analysis.</jats:p

    Horses for Courses in the Era of CARs: Advancing CAR T and CAR NK Cell Therapies

    No full text
    The adoptive transfer of allogeneic CAR NK cells holds great promise as an anticancer modality due to the relative ease of manufacturing and genetic modification of NK cells, which translates into affordable pricing. Compared to the pronounced efficacy of CAR T cell therapy in the treatment of B cell malignancies, rigorous clinical and preclinical assessment of the antitumor properties of CAR NK cells has been lagging behind. In this brief review, we summarize the biological features of NK cells that may help define the therapeutic niche of CAR NK cells as well as create more potent NK cell-based anticancer products. In addition, we compare T cells and NK cells as the carriers of CARs using the data of single-cell transcriptomic analysis
    corecore