983 research outputs found
Target oriented relational model finding
Lecture Notes in Computer Science 8411, 2014Model finders are becoming useful in many software engineering problems. Kodkod is one of the most popular, due to its support for relational logic (a combination of first order logic with relational algebra operators and transitive closure), allowing a simpler specification of constraints, and support for partial instances, allowing the specification of a priori (exact, but potentially partial) knowledge about a problem's solution. However, in some software engineering problems, such as model repair or bidirectional model transformation, knowledge about the solution is not exact, but instead there is a known target that the solution should approximate. In this paper we extend Kodkod's partial instances to allow the specification of such targets, and show how its model finding procedure can be adapted to support them (using both PMax-SAT solvers or SAT solvers with cardinality constraints). Two case studies are also presented, including a careful performance evaluation to assess the effectiveness of the proposed extension.(undefined
Efficient Monte Carlo algorithm and high-precision results for percolation
We present a new Monte Carlo algorithm for studying site or bond percolation
on any lattice. The algorithm allows us to calculate quantities such as the
cluster size distribution or spanning probability over the entire range of site
or bond occupation probabilities from zero to one in a single run which takes
an amount of time scaling linearly with the number of sites on the lattice. We
use our algorithm to determine that the percolation transition occurs at
occupation probability 0.59274621(13) for site percolation on the square
lattice and to provide clear numerical confirmation of the conjectured
4/3-power stretched-exponential tails in the spanning probability functions.Comment: 8 pages, including 3 postscript figures, minor corrections in this
version, plus updated figures for the position of the percolation transitio
Dynamic connectivity algorithms for Monte Carlo simulations of the random-cluster model
We review Sweeny's algorithm for Monte Carlo simulations of the random
cluster model. Straightforward implementations suffer from the problem of
computational critical slowing down, where the computational effort per edge
operation scales with a power of the system size. By using a tailored dynamic
connectivity algorithm we are able to perform all operations with a
poly-logarithmic computational effort. This approach is shown to be efficient
in keeping online connectivity information and is of use for a number of
applications also beyond cluster-update simulations, for instance in monitoring
droplet shape transitions. As the handling of the relevant data structures is
non-trivial, we provide a Python module with a full implementation for future
reference.Comment: Contribution to the "XXV IUPAP Conference on Computational Physics"
proceedings; Corrected equation 3 and error in the maximal number of edge
level
Leader Election in Anonymous Rings: Franklin Goes Probabilistic
We present a probabilistic leader election algorithm for anonymous, bidirectional, asynchronous rings. It is based on an algorithm from Franklin, augmented with random identity selection, hop counters to detect identity clashes, and round numbers modulo 2. As a result, the algorithm is finite-state, so that various model checking techniques can be employed to verify its correctness, that is, eventually a unique leader is elected with probability one. We also sketch a formal correctness proof of the algorithm for rings with arbitrary size
Interaction of quasilocal harmonic modes and boson peak in glasses
The direct proportionality relation between the boson peak maximum in
glasses, , and the Ioffe-Regel crossover frequency for phonons,
, is established. For several investigated materials . At the frequency the mean free path of the
phonons becomes equal to their wavelength because of strong resonant
scattering on quasilocal harmonic oscillators. Above this frequency phonons
cease to exist. We prove that the established correlation between
and holds in the general case and is a direct consequence of
bilinear coupling of quasilocal oscillators with the strain field.Comment: RevTex, 4 pages, 1 figur
Algorithms for Game Metrics
Simulation and bisimulation metrics for stochastic systems provide a
quantitative generalization of the classical simulation and bisimulation
relations. These metrics capture the similarity of states with respect to
quantitative specifications written in the quantitative {\mu}-calculus and
related probabilistic logics. We first show that the metrics provide a bound
for the difference in long-run average and discounted average behavior across
states, indicating that the metrics can be used both in system verification,
and in performance evaluation. For turn-based games and MDPs, we provide a
polynomial-time algorithm for the computation of the one-step metric distance
between states. The algorithm is based on linear programming; it improves on
the previous known exponential-time algorithm based on a reduction to the
theory of reals. We then present PSPACE algorithms for both the decision
problem and the problem of approximating the metric distance between two
states, matching the best known algorithms for Markov chains. For the
bisimulation kernel of the metric our algorithm works in time O(n^4) for both
turn-based games and MDPs; improving the previously best known O(n^9\cdot
log(n)) time algorithm for MDPs. For a concurrent game G, we show that
computing the exact distance between states is at least as hard as computing
the value of concurrent reachability games and the square-root-sum problem in
computational geometry. We show that checking whether the metric distance is
bounded by a rational r, can be done via a reduction to the theory of real
closed fields, involving a formula with three quantifier alternations, yielding
O(|G|^O(|G|^5)) time complexity, improving the previously known reduction,
which yielded O(|G|^O(|G|^7)) time complexity. These algorithms can be iterated
to approximate the metrics using binary search.Comment: 27 pages. Full version of the paper accepted at FSTTCS 200
An algorithm to calculate the transport exponent in strip geometries
An algorithm for solving the random resistor problem by means of the
transfer-matrix approach is presented. Preconditioning by spanning clusters
extraction both reduces the size of the conductivity matrix and speed up the
calculations.Comment: 17 pages, RevTeX2.1, HLRZ - 97/9
A fast Monte Carlo algorithm for site or bond percolation
We describe in detail a new and highly efficient algorithm for studying site
or bond percolation on any lattice. The algorithm can measure an observable
quantity in a percolation system for all values of the site or bond occupation
probability from zero to one in an amount of time which scales linearly with
the size of the system. We demonstrate our algorithm by using it to investigate
a number of issues in percolation theory, including the position of the
percolation transition for site percolation on the square lattice, the
stretched exponential behavior of spanning probabilities away from the critical
point, and the size of the giant component for site percolation on random
graphs.Comment: 17 pages, 13 figures. Corrections and some additional material in
this version. Accompanying material can be found on the web at
http://www.santafe.edu/~mark/percolation
Minimal vertex covers on finite-connectivity random graphs - a hard-sphere lattice-gas picture
The minimal vertex-cover (or maximal independent-set) problem is studied on
random graphs of finite connectivity. Analytical results are obtained by a
mapping to a lattice gas of hard spheres of (chemical) radius one, and they are
found to be in excellent agreement with numerical simulations. We give a
detailed description of the replica-symmetric phase, including the size and the
entropy of the minimal vertex covers, and the structure of the unfrozen
component which is found to percolate at connectivity . The
replica-symmetric solution breaks down at . We give a simple
one-step replica symmetry broken solution, and discuss the problems in
interpretation and generalization of this solution.Comment: 32 pages, 9 eps figures, to app. in PRE (01 May 2001
- …
