4 research outputs found
The EPTN consensus-based atlas for CT- and MR-based contouring in neuro-oncology
Biological, physical and clinical aspects of cancer treatment with ionising radiatio
Radiation dose constraints for organs at risk in neuro-oncology; the European Particle Therapy Network consensus
Biological, physical and clinical aspects of cancer treatment with ionising radiatio
Radiation dose constraints for organs at risk in neuro-oncology:the European Particle Therapy Network consensus
Purpose: For unbiased comparison of different radiation modalities and techniques, consensus on delineation of radiation sensitive organs at risk (OARs) and on their dose constraints is warranted. Following the publication of a digital, online atlas for OAR delineation in neuro-oncology by the same group, we assessed the brain OAR-dose constraints in a follow-up study. Methods: We performed a comprehensive search to identify the current papers on OAR dose constraints for normofractionated photon and particle therapy in PubMed, Ovid Medline, Cochrane Library, Embase and Web of Science. Moreover, the included articles' reference lists were cross-checked for potential studies that met the inclusion criteria. Consensus was reached among 20 radiation oncology experts in the field of neuro-oncology. Results: For the OARs published in the neuro-oncology literature, we summarized the available literature and recommended dose constraints associated with certain levels of normal tissue complication probability (NTCP) according to the recent ICRU recommendations. For those OARs with lacking or insufficient NTCP data, a proposal for effective and efficient data collection is given. Conclusion: The use of the European Particle Therapy Network-consensus OAR dose constraints summarized in this article is recommended for the model-based approach comparing photon and proton beam irradiation as well as for prospective clinical trials including novel radiation techniques and/or modalities. (C) 2018 Elsevier B.V. All rights reserved
The European Particle Therapy Network (EPTN) consensus on the follow-up of adult patients with brain and skull base tumours treated with photon or proton irradiation.
Treatment-related toxicity after irradiation of brain tumours has been underreported in the literature. Furthermore, there is considerable heterogeneity on how and when toxicity is evaluated. The aim of this European Particle Network (EPTN) collaborative project is to develop recommendations for uniform follow-up and toxicity scoring of adult brain tumour patients treated with radiotherapy. A Delphi method-based consensus was reached among 24 international radiation-oncology experts in the field of neuro-oncology concerning the toxicity endpoints, evaluation methods and time points. In this paper, we present a basic framework for consistent toxicity scoring and follow-up, using multiple levels of recommendation. Level I includes all recommendations that are considered minimum of care, whereas level II and III are optional evaluations in the advanced clinical or research setting, respectively. Per outcome domain, the clinical endpoints and evaluation methods per level are listed. Where relevant, the organ at risk threshold doses for recommended referral to specific organ specialists are defined. These consensus-based recommendations for follow-up will enable the collection of uniform toxicity data of brain tumour patients treated with radiotherapy. With adoptation of this standard, collaboration will be facilitated and we can further propel the research field of radiation-induced toxicities relevant for these patients. An online tool to implement this guideline in clinical practice is provided at www.cancerdata.org
