934 research outputs found
Status of Matter-Gravity Couplings in the SME
Constraints on Lorentz violation in matter-gravity couplings are summarized
along with existing proposals to obtain sensitivities that exceed current
limits by up to 11 orders of magnitude.Comment: Presented at the Sixth Meeting on CPT and Lorentz Symmetry,
Bloomington, Indiana, June 17-21, 201
Lorentz Symmetry and Matter-Gravity Couplings
This proceedings contribution summarizes recent investigations of Lorentz
violation in matter-gravity couplings.Comment: 5 pages. Presented at the Fifth Meeting on CPT and Lorentz Symmetry,
Bloomington, Indiana, June 28-July 2, 201
Mackey-complete spaces and power series -- A topological model of Differential Linear Logic
In this paper, we have described a denotational model of Intuitionist Linear
Logic which is also a differential category. Formulas are interpreted as
Mackey-complete topological vector space and linear proofs are interpreted by
bounded linear functions. So as to interpret non-linear proofs of Linear Logic,
we have used a notion of power series between Mackey-complete spaces,
generalizing the notion of entire functions in C. Finally, we have obtained a
quantitative model of Intuitionist Differential Linear Logic, where the
syntactic differentiation correspond to the usual one and where the
interpretations of proofs satisfy a Taylor expansion decomposition
The Structure of First-Order Causality
Game semantics describe the interactive behavior of proofs by interpreting
formulas as games on which proofs induce strategies. Such a semantics is
introduced here for capturing dependencies induced by quantifications in
first-order propositional logic. One of the main difficulties that has to be
faced during the elaboration of this kind of semantics is to characterize
definable strategies, that is strategies which actually behave like a proof.
This is usually done by restricting the model to strategies satisfying subtle
combinatorial conditions, whose preservation under composition is often
difficult to show. Here, we present an original methodology to achieve this
task, which requires to combine advanced tools from game semantics, rewriting
theory and categorical algebra. We introduce a diagrammatic presentation of the
monoidal category of definable strategies of our model, by the means of
generators and relations: those strategies can be generated from a finite set
of atomic strategies and the equality between strategies admits a finite
axiomatization, this equational structure corresponding to a polarized
variation of the notion of bialgebra. This work thus bridges algebra and
denotational semantics in order to reveal the structure of dependencies induced
by first-order quantifiers, and lays the foundations for a mechanized analysis
of causality in programming languages
Taylor expansion for Call-By-Push-Value
The connection between the Call-By-Push-Value lambda-calculus introduced by Levy and Linear Logic introduced by Girard has been widely explored through a denotational view reflecting the precise ruling of resources in this language. We take a further step in this direction and apply Taylor expansion introduced by Ehrhard and Regnier. We define a resource lambda-calculus in whose terms can be used to approximate terms of Call-By-Push-Value. We show that this approximation is coherent with reduction and with the translations of Call-By-Name and Call-By-Value strategies into Call-By-Push-Value
- …
