934 research outputs found

    Status of Matter-Gravity Couplings in the SME

    Full text link
    Constraints on Lorentz violation in matter-gravity couplings are summarized along with existing proposals to obtain sensitivities that exceed current limits by up to 11 orders of magnitude.Comment: Presented at the Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 17-21, 201

    Lorentz Symmetry and Matter-Gravity Couplings

    Full text link
    This proceedings contribution summarizes recent investigations of Lorentz violation in matter-gravity couplings.Comment: 5 pages. Presented at the Fifth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 28-July 2, 201

    Mackey-complete spaces and power series -- A topological model of Differential Linear Logic

    Get PDF
    In this paper, we have described a denotational model of Intuitionist Linear Logic which is also a differential category. Formulas are interpreted as Mackey-complete topological vector space and linear proofs are interpreted by bounded linear functions. So as to interpret non-linear proofs of Linear Logic, we have used a notion of power series between Mackey-complete spaces, generalizing the notion of entire functions in C. Finally, we have obtained a quantitative model of Intuitionist Differential Linear Logic, where the syntactic differentiation correspond to the usual one and where the interpretations of proofs satisfy a Taylor expansion decomposition

    The Structure of First-Order Causality

    Get PDF
    Game semantics describe the interactive behavior of proofs by interpreting formulas as games on which proofs induce strategies. Such a semantics is introduced here for capturing dependencies induced by quantifications in first-order propositional logic. One of the main difficulties that has to be faced during the elaboration of this kind of semantics is to characterize definable strategies, that is strategies which actually behave like a proof. This is usually done by restricting the model to strategies satisfying subtle combinatorial conditions, whose preservation under composition is often difficult to show. Here, we present an original methodology to achieve this task, which requires to combine advanced tools from game semantics, rewriting theory and categorical algebra. We introduce a diagrammatic presentation of the monoidal category of definable strategies of our model, by the means of generators and relations: those strategies can be generated from a finite set of atomic strategies and the equality between strategies admits a finite axiomatization, this equational structure corresponding to a polarized variation of the notion of bialgebra. This work thus bridges algebra and denotational semantics in order to reveal the structure of dependencies induced by first-order quantifiers, and lays the foundations for a mechanized analysis of causality in programming languages

    Taylor expansion for Call-By-Push-Value

    Get PDF
    The connection between the Call-By-Push-Value lambda-calculus introduced by Levy and Linear Logic introduced by Girard has been widely explored through a denotational view reflecting the precise ruling of resources in this language. We take a further step in this direction and apply Taylor expansion introduced by Ehrhard and Regnier. We define a resource lambda-calculus in whose terms can be used to approximate terms of Call-By-Push-Value. We show that this approximation is coherent with reduction and with the translations of Call-By-Name and Call-By-Value strategies into Call-By-Push-Value
    corecore