269 research outputs found
Algorithm Selection Framework for Cyber Attack Detection
The number of cyber threats against both wired and wireless computer systems
and other components of the Internet of Things continues to increase annually.
In this work, an algorithm selection framework is employed on the NSL-KDD data
set and a novel paradigm of machine learning taxonomy is presented. The
framework uses a combination of user input and meta-features to select the best
algorithm to detect cyber attacks on a network. Performance is compared between
a rule-of-thumb strategy and a meta-learning strategy. The framework removes
the conjecture of the common trial-and-error algorithm selection method. The
framework recommends five algorithms from the taxonomy. Both strategies
recommend a high-performing algorithm, though not the best performing. The work
demonstrates the close connectedness between algorithm selection and the
taxonomy for which it is premised.Comment: 6 pages, 7 figures, 1 table, accepted to WiseML '2
Malware in the Future? Forecasting of Analyst Detection of Cyber Events
There have been extensive efforts in government, academia, and industry to
anticipate, forecast, and mitigate cyber attacks. A common approach is
time-series forecasting of cyber attacks based on data from network telescopes,
honeypots, and automated intrusion detection/prevention systems. This research
has uncovered key insights such as systematicity in cyber attacks. Here, we
propose an alternate perspective of this problem by performing forecasting of
attacks that are analyst-detected and -verified occurrences of malware. We call
these instances of malware cyber event data. Specifically, our dataset was
analyst-detected incidents from a large operational Computer Security Service
Provider (CSSP) for the U.S. Department of Defense, which rarely relies only on
automated systems. Our data set consists of weekly counts of cyber events over
approximately seven years. Since all cyber events were validated by analysts,
our dataset is unlikely to have false positives which are often endemic in
other sources of data. Further, the higher-quality data could be used for a
number for resource allocation, estimation of security resources, and the
development of effective risk-management strategies. We used a Bayesian State
Space Model for forecasting and found that events one week ahead could be
predicted. To quantify bursts, we used a Markov model. Our findings of
systematicity in analyst-detected cyber attacks are consistent with previous
work using other sources. The advanced information provided by a forecast may
help with threat awareness by providing a probable value and range for future
cyber events one week ahead. Other potential applications for cyber event
forecasting include proactive allocation of resources and capabilities for
cyber defense (e.g., analyst staffing and sensor configuration) in CSSPs.
Enhanced threat awareness may improve cybersecurity.Comment: Revised version resubmitted to journa
- …
