264 research outputs found

    Prediction of infrared light emission from pi-conjugated polymers: a diagrammatic exciton basis valence bond theory

    Full text link
    There is currently a great need for solid state lasers that emit in the infrared, as this is the operating wavelength regime for applications in telecommunications. Existing π\pi--conjugated polymers all emit in the visible or ultraviolet, and whether or not π\pi--conjugated polymers that emit in the infrared can be designed is an interesting challenge. On the one hand, the excited state ordering in trans-polyacetylene, the π\pi--conjugated polymer with relatively small optical gap, is not conducive to light emission because of electron-electron interaction effects. On the other hand, excited state ordering opposite to that in trans-polyacetylene is usually obtained by chemical modification that increases the effective bond-alternation, which in turn increases the optical gap. We develop a theory of electron correlation effects in a model π\pi-conjugated polymer that is obtained by replacing the hydrogen atoms of trans-polyacetylene with transverse conjugated groups, and show that the effective on-site correlation in this system is smaller than the bare correlation in the unsubstituted system. An optical gap in the infrared as well as excited state ordering conducive to light emission is thereby predicted upon similar structural modifications.Comment: 15 pages, 15 figures, 1 tabl

    Correlated theory of triplet photoinduced absorption in phenylene-vinylene chains

    Full text link
    In this paper we present results of large-scale correlated calculations of triplet photoinduced absorption (PA) spectrum of oligomers of poly-(para)phenylenevinylene (PPV) containing up to five phenyl rings. In particular, the high-energy features in the triplet PA spectrum of oligo-PPVs are the focus of this study, which, so far, have not been investigated theoretically, or experimentally. The calculations were performed using the Pariser-Parr-Pople (PPP) model Hamiltonian, and many-body effects were taken into account by means of multi-reference singles-doubles configuration interaction procedure (MRSDCI), without neglecting any molecular orbitals. The computed triplet PA spectrum of oligo-PPVs exhibits rich structure consisting of alternating peaks of high and low intensities. The predicted higher energy features of the triplet spectrum can be tested in future experiments. Additionally, theoretical estimates of exciton binding energy are also presented.Comment: To appear in Phys. Rev.

    The Capillary Flow Experiments Aboard the International Space Station: Increments 9-15

    Get PDF
    This report provides a summary of the experimental, analytical, and numerical results of the Capillary Flow Experiment (CFE) performed aboard the International Space Station (ISS). The experiments were conducted in space beginning with Increment 9 through Increment 16, beginning August 2004 and ending December 2007. Both primary and extra science experiments were conducted during 19 operations performed by 7 astronauts including: M. Fincke, W. McArthur, J. Williams, S. Williams, M. Lopez-Alegria, C. Anderson, and P. Whitson. CFE consists of 6 approximately 1 to 2 kg handheld experiment units designed to investigate a selection of capillary phenomena of fundamental and applied importance, such as large length scale contact line dynamics (CFE-Contact Line), critical wetting in discontinuous structures (CFE-Vane Gap), and capillary flows and passive phase separations in complex containers (CFE-Interior Corner Flow). Highly quantitative video from the simply performed flight experiments provide data helpful in benchmarking numerical methods, confirming theoretical models, and guiding new model development. In an extensive executive summary, a brief history of the experiment is reviewed before introducing the science investigated. A selection of experimental results and comparisons with both analytic and numerical predictions is given. The subsequent chapters provide additional details of the experimental and analytical methods developed and employed. These include current presentations of the state of the data reduction which we anticipate will continue throughout the year and culminate in several more publications. An extensive appendix is used to provide support material such as an experiment history, dissemination items to date (CFE publication, etc.), detailed design drawings, and crew procedures. Despite the simple nature of the experiments and procedures, many of the experimental results may be practically employed to enhance the design of spacecraft engineering systems involving capillary interface dynamics

    Accounting for both electron--lattice and electron--electron coupling in conjugated polymers: minimum total energy calculations on the Hubbard--Peierls hamiltonian

    Full text link
    Minimum total energy calculations, which account for both electron--lattice and electron--electron interactions in conjugated polymers are performed for chains with up to eight carbon atoms. These calculations are motivated in part by recent experimental results on the spectroscopy of polyenes and conjugated polymers and shed light on the longstanding question of the relative importance of electron--lattice vs. electron--electron interactions in determining the properties of these systems.Comment: 6 pages, Plain TeX, FRL-PSD-93GR

    Electron correlation effects in electron-hole recombination in organic light-emitting diodes

    Get PDF
    We develop a general theory of electron--hole recombination in organic light emitting diodes that leads to formation of emissive singlet excitons and nonemissive triplet excitons. We briefly review other existing theories and show how our approach is substantively different from these theories. Using an exact time-dependent approach to the interchain/intermolecular charge-transfer within a long-range interacting model we find that, (i) the relative yield of the singlet exciton in polymers is considerably larger than the 25% predicted from statistical considerations, (ii) the singlet exciton yield increases with chain length in oligomers, and, (iii) in small molecules containing nitrogen heteroatoms, the relative yield of the singlet exciton is considerably smaller and may be even close to 25%. The above results are independent of whether or not the bond-charge repulsion, X_perp, is included in the interchain part of the Hamiltonian for the two-chain system. The larger (smaller) yield of the singlet (triplet) exciton in carbon-based long-chain polymers is a consequence of both its ionic (covalent) nature and smaller (larger) binding energy. In nitrogen containing monomers, wavefunctions are closer to the noninteracting limit, and this decreases (increases) the relative yield of the singlet (triplet) exciton. Our results are in qualitative agreement with electroluminescence experiments involving both molecular and polymeric light emitters. The time-dependent approach developed here for describing intermolecular charge-transfer processes is completely general and may be applied to many other such processes.Comment: 19 pages, 11 figure

    Reassessing the sustainability promise of cultured meat: a critical review with new data perspectives

    Get PDF
    There are currently over 170 companies in the field of cultured meat (CM) which have attracted over US$3 Billion in investments since 2019. The CM industry owes much of this success to the many claims around environmental benefits and alleviating animal welfare concerns, while being equally nutritious and as acceptable as conventional meat. This review aims to provide a much needed discussion on the latest research findings concerning the nutritional and environmental sustainability of CM and provide an evidence-based discussion around some of the challenges that the industry faces today. Recent developments in the field have revealed that some of the sustainability claims of the CM industry are overly ambitious and not supported by evidence. Environmental assessments have revealed that CM production is highly energy intensive and its environmental footprint can only be improved if renewable energy sources are used. In terms of nutritional quality of CM, there are many unknowns and gaps in the knowledge that require investigation.fals

    Theory of excited state absorptions in phenylene-based π\pi-conjugated polymers

    Full text link
    Within a rigid-band correlated electron model for oligomers of poly-(paraphenylene) (PPP) and poly-(paraphenylenevinylene) (PPV), we show that there exist two fundamentally different classes of two-photon Ag_g states in these systems to which photoinduced absorption (PA) can occur. At relatively lower energies there occur Ag_g states which are superpositions of one electron - one hole (1e--1h) and two electron -- two hole (2e--2h) excitations, that are both comprised of the highest delocalized valence band and the lowest delocalized conduction band states only. The dominant PA is to one specific member of this class of states (the mAg_g). In addition to the above class of Ag_g states, PA can also occur to a higher energy kAg_g state whose 2e--2h component is {\em different} and has significant contributions from excitations involving both delocalized and localized bands. Our calculated scaled energies of the mAg_g and the kAg_g agree reasonably well to the experimentally observed low and high energy PAs in PPV. The calculated relative intensities of the two PAs are also in qualitative agreement with experiment. In the case of ladder-type PPP and its oligomers, we predict from our theoretical work a new intense PA at an energy considerably lower than the region where PA have been observed currently. Based on earlier work that showed that efficient charge--carrier generation occurs upon excitation to odd--parity states that involve both delocalized and localized bands, we speculate that it is the characteristic electronic nature of the kAg_g that leads to charge generation subsequent to excitation to this state, as found experimentally.Comment: Revtex4 style, 2 figures inserted in the text, three tables, 10 page

    Triterpenic and phenolic acids production changed in Salvia officinalis via in vitro and in vivo polyploidization: A consequence of altered genes expression

    Get PDF
    The induction of polyploidy is an efficient technique for creating a diversity of genetic, phenotypic, and phytochemical novelties in plant taxa. Sage (Salvia officinalis L.) is a well-known medicinal plant rich of valuable bioactive molecules such as triterpenic and phenolic acids. In the present study, the effect of in vitro and in vivo polyploidization on morphological characteristics, anatomical structures, phytochemical traits, and expression level of the genes involved in the biosynthesis of major triterpenic acids (ursolic, betulinic, and oleanolic acids) of the plant was studied. The sterile seeds treated with different concentrations (0, 0.05, 0.1, and 0.2%) of colchicine for 24 and 48 h were considered for polyploidy induction. Flow cytometry and chromosome counting were used to confirm the ploidy level of diploid (2n = 2x = 14, 2C DNA = 1.10 pg) and tetraploid (2n = 4x = 28, 2C DNA = 2.12 pg) plants after seven months. The highest polyploidy induction was obtained by applying 0.1% (w/v) colchicine for 48 h with an efficiency of 19.05% in vitro tetraploidy. Polyploids showed differences in leaf shape and color, leaf and stem thickness, trichrome density, root length, plant height, and number of leaves compared to diploid plants. There was also a significant decrease in rosmarinic acid content in polyploid (plants) as compared to diploid plants. Although a significant decrease in ursolic acid content was observed in polyploids, betulinic acid content associated with the expression levels of genes encoding enzymes being active in triterpene biosynthesis such as squalene epoxidase (SQE) and lupeol synthase (LUS). The expression of SQE and LUS was significantly increased in in vitro tertaploids (2.9-fold) and in vivo mixoploids (2.4-fold). The results confirm the idea that induced polyploidy can randomly alter breeding traits of plants as well as the content of bioactive compounds

    Induced polyploidy and broad variation in phytochemical traits and altered gene expression in Salvia multicaulis

    Get PDF
    Induced polyploidy is nowadays an important strategy in plant breeding and for the development of new crops. Salvia multicaulis Vahl is a valuable medicinal plant that produce precious bioactive metabolites including triterpenic acids (TAs) and phenolic compounds. Hence, at first, for selecting elite lines, both HPLC and GC-MC analyses were performed on fourteen S. multicaulis lines. Then, seeds of selected lines of S. multicaulis were exposed to different concentrations (0.00, 0.05, 0.1, and 0.2 %) of colchicine for 24 or 48 h. The flow cytometric analysis and chromosome counting were used to confirm ploidy level of tetraploid control (2n = 4x = 28, 2C DNA = 1.36 pg) and hexaploid (2n = 6x = 42, 2C DNA = 1.97 pg) plants after seven-month. For the first time, the effects of in vitro polyploidization on morphological characteristics, TAs and phenolic acid contents as well as on the expression of six TAs biosynthesis related genes were investigated. The highest efficiency of hexaploidy (12.76 %) was achieved 48 h after exposure to 0.1 % colchicine concentration. The hexaploid plants showed different growth traits compared with those of tetraploid control plant; indeed, hexaploid plants had leaves with a darker green color, a lower trichome density, and lower plant height and root length. Moreover, there was a significant increase in rosmarinic acid and caffeic acid content in hexaploid plants compared with tetraploid control plants. Also, the increase of oleanolic acid (1.33 fold) content in hexaploids was associated with a significant increased expression of squalene synthase (SQS) and β-amyrin synthase (BAS) genes in hexaploid plants. Nevertheless, a significant decreased expression of squalene epoxidase (SQE), mixed-function amyrin synthase (MFAS), and lupeol synthase (LUS) was observed in hexaploid plants, that led to a reduced content of ursolic acid and betulinic acid compared with tetraploid control plants. These results confirmed that polyploidization is a breeding method with stochastic results in secondary metabolites production and gene expression related to biosynthetic pathways

    Phenolics diversity among wild populations of Salvia multicaulis: as a precious source for antimicrobial and antioxidant applications

    Get PDF
    The genus Salvia L. belongs to the Lamiaceae family including several known species rich in natural compounds that are extensively used in pharmaceutical, food, and cosmetic industries. Salvia multicaulis populations contain a broad diversity of flavonoids and phenolic acids. The present study aimed to explore biological and pharmacological effects including antimicrobial and antioxidant activities of nineteen S. multicaulis populations (SMPs) grown in Iran for the first time. High content of rosmarinic acid (RA) in SMP12 (Gazan) (5.65 ± 0.33 mg/g DW) caused high antimicrobial activity against two bacteria (Staphylococcus aureus, Escherichia coli) and the fungus Candida albicans, while methanolic extract of SMP1 (Taleghan) showed high antioxidant activity due to high content of salvianolic acid A (SAA) and quercetin (0.53 ± 0.04 and 0.49 ± 0.12 mg/g DW, respectively). Altogether these results can be considered for further commercial exploitations to meet the demands of the food and pharmaceutical industries
    corecore