129 research outputs found
Absorbed doses and radiation damage during the 11 years of LEP operation
During the 11 years of operation of the Large Electron Positron Collider (LEP), synchrotron radiation was emitted in the tunnel. This ionizing radiation induced degradation in organic insulators and structural materials, as well as in electronics. Annual dosimetric measurements have shown that the level of radiation increased with the ninth power of the beam energy. During the machine shut-downs and at the end of the operation, samples of rigid and flexible polymeric insulators (magnet-coil resins and cable insulations) were taken out and checked for their integrity. The test results are compared with the results obtained during the qualification of the materials, 12 to 15 years ago. At that time, lifetime predictions were done; they are now compared with the real time aged materials
On-Line Radiation Test Facility for Industrial Equipment needed for the Large Hadron Collider at CERN
The future Large Hadron Collider to be built at CERN will use superconducting magnets cooled down to 1.2 K. To preserve the superconductivity, the energy deposition dose levels in equipment located outside the cryostat, in the LHC tunnel, are calculated to be of the order of 1 to 10 Gy per year. At such dose levels, no major radiation-damage problems are to be expected, and the possibility of installing Commercial Of The Shelf (COTS) electronic equipment in the LHC tunnel along the accelerator is considered. To this purpose, industrial electronic equipment and circuits have to be qualified and tested against radiation to insure their long term stability and reliability. An on-line radiation test facility has been setup at the CERN Super Proton Synchrotron (SPS) and a program of on-line tests for electronic equipment is ongoing. Equipment tested includes Industrial Programmable Logic Controllers (PLCs) from several manufacturers, standard VME modules, Fieldbuses like Profibus, WorldFIP and CAN, various electronic cards, power converter equipment and cryogenic components. The irradiation is taking place in one of the target areas of the CERN SPS. The radiation is typical of a proton accelerator, it includes mainly gammas and neutrons, plus some some high-energy particles
Synchrotron Radiation Effects at LEP
With the increase of the LEP beam energy, synchrotron radiation effects become ever more important. Around the experiments, masks have been successfully used to absorb the higher rates, and photon bac kgrounds have not been a problem. Elsewhere around the ring, however, the increased radiated power has adversely affected various accelerator components; sections of the vacuum chamber, electronics, c ables and beam instrumentation equipment have all suffered. Furthermore, the use of wiggler magnets to control the bunch size has given rise to local problems on nearby separator equipment. These effe cts will be presented, together with the steps taken to avoid further difficulties at the higher energies and higher beam currents foreseen in future
High-level dosimetry results for the CERN high-energy accelerators: part 3: the LEP machine (at 94.5 GeV) 1998
Alignment of the ALICE Inner Tracking System with cosmic-ray tracks
37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe
First proton-proton collisions at the LHC as observed with the ALICE detector: measurement of the charged-particle pseudorapidity density at root s=900 GeV
-On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range vertical bar eta vertical bar S collider. They also illustrate the excellent functioning and rapid progress of the LHC accelerator, and of both the hardware and software of the ALICE experiment, in this early start-up phase
First proton-proton collisions at the LHC as observed with the ALICE detector: measurement of the charged-particle pseudorapidity density at root s=900 GeV
On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range vertical bar eta vertical bar S collider. They also illustrate the excellent functioning and rapid progress of the LHC accelerator, and of both the hardware and software of the ALICE experiment, in this early start-up phase
ACCESS and SAFETY Procedures for ALICE
This document presents a summary of instructions to new arrivals to the ALICE project as well as to those collaborators who change activities and will come more often to Point-2. The document is entirely composed of already existing rules. It may serve as a book of reference and a safety refresher. It will be revised when the access conditions change, in particular before the start-up of the machine. References for detailed reading are also provided. Most important are the contact lists and it is encouraged to use them as early as possible
- …
