5,588 research outputs found

    Collateral afferent excitation of reticular formation of brain stem

    Get PDF

    Change in hematologic indices over time in pediatric inflammatory bowel disease treated with azathioprine

    Get PDF
    Azathioprine leads to changes in mean corpuscular volume (MCV) and white blood cell (WBC) indices reflecting efficacy or toxicity. Understanding the interactions between bone marrow stem cells and azathioprine could highlight abnormal response patterns as forerunners for hematologic malig-nancies. This study gives a statistical description of factors influencing the relationship between MCV and WBC in children with inflammatory bowel disease treated with azathioprine. We found that leukopenia preceded macro¬cytosis. Macrocytosis is therefore not a good predictor of leukopenia. Further studies will be necessary to determine the subgroup of patients at increased risk of malignancies based on bone marrow response

    Gravitational Energy Loss and Binary Pulsars in the Scalar Ether-Theory of Gravitation

    Full text link
    Motivation is given for trying a theory of gravity with a preferred reference frame (``ether'' for short). One such theory is summarized, that is a scalar bimetric theory. Dynamics is governed by an extension of Newton's second law. In the static case, geodesic motion is recovered together with Newton's attraction field. In the static spherical case, Schwarzschild's metric is got. An asymptotic scheme of post-Minkowskian (PM) approximation is built by associating a conceptual family of systems with the given weakly-gravitating system. It is more general than the post-Newtonian scheme in that the velocity may be comparable with cc. This allows to justify why the 0PM approximation of the energy rate may be equated to the rate of the Newtonian energy, as is usually done. At the 0PM approximation of this theory, an isolated system loses energy by quadrupole radiation, without any monopole or dipole term. It seems plausible that the observations on binary pulsars (the pulse data) could be nicely fitted with a timing model based on this theory.Comment: Text of a talk given at the 4th Conf. on Physics Beyond the Standard Model, Tegernsee, June 2003, submitted to the Proceedings (H. V. Klapdor-Kleingrothaus, ed.

    The effect of intervertebral cartilage on neutral posture and range of motion in the necks of sauropod dinosaurs

    Get PDF
    The necks of sauropod dinosaurs were a key factor in their evolution. The habitual posture and range of motion of these necks has been controversial, and computer-aided studies have argued for an obligatory sub-horizontal pose. However, such studies are compromised by their failure to take into account the important role of intervertebral cartilage. This cartilage takes very different forms in different animals. Mammals and crocodilians have intervertebral discs, while birds have synovial joints in their necks. The form and thickness of cartilage varies significantly even among closely related taxa. We cannot yet tell whether the neck joints of sauropods more closely resembled those of birds or mammals. Inspection of CT scans showed cartilage:bone ratios of 4.5% for Sauroposeidon and about 20% and 15% for two juvenile Apatosaurus individuals. In extant animals, this ratio varied from 2.59% for the rhea to 24% for a juvenile giraffe. It is not yet possible to disentangle ontogenetic and taxonomic signals, but mammal cartilage is generally three times as thick as that of birds. Our most detailed work, on a turkey, yielded a cartilage:bone ratio of 4.56%. Articular cartilage also added 11% to the length of the turkey's zygapophyseal facets. Simple image manipulation suggests that incorporating 4.56% of neck cartilage into an intervertebral joint of a turkey raises neutral posture by 15°. If this were also true of sauropods, the true neutral pose of the neck would be much higher than has been depicted. An additional 11% of zygapophyseal facet length translates to 11% more range of motion at each joint. More precise quantitative results must await detailed modelling. In summary, including cartilage in our models of sauropod necks shows that they were longer, more elevated and more flexible than previously recognised

    Epidemics on contact networks: a general stochastic approach

    Full text link
    Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our systematic framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible (SIS) and susceptible-infectious-removed (SIR) dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.Comment: Main document: 16 pages, 7 figures. Electronic Supplementary Material (included): 6 pages, 1 tabl

    Robust optical delay lines via topological protection

    Get PDF
    Phenomena associated with topological properties of physical systems are naturally robust against perturbations. This robustness is exemplified by quantized conductance and edge state transport in the quantum Hall and quantum spin Hall effects. Here we show how exploiting topological properties of optical systems can be used to implement robust photonic devices. We demonstrate how quantum spin Hall Hamiltonians can be created with linear optical elements using a network of coupled resonator optical waveguides (CROW) in two dimensions. We find that key features of quantum Hall systems, including the characteristic Hofstadter butterfly and robust edge state transport, can be obtained in such systems. As a specific application, we show that the topological protection can be used to dramatically improve the performance of optical delay lines and to overcome limitations related to disorder in photonic technologies.Comment: 9 pages, 5 figures + 12 pages of supplementary informatio

    Global aspects of the space of 6D N = 1 supergravities

    Get PDF
    We perform a global analysis of the space of consistent 6D quantum gravity theories with N = 1 supersymmetry, including models with multiple tensor multiplets. We prove that for theories with fewer than T = 9 tensor multiplets, a finite number of distinct gauge groups and matter content are possible. We find infinite families of field combinations satisfying anomaly cancellation and admitting physical gauge kinetic terms for T > 8. We find an integral lattice associated with each apparently-consistent supergravity theory; this lattice is determined by the form of the anomaly polynomial. For models which can be realized in F-theory, this anomaly lattice is related to the intersection form on the base of the F-theory elliptic fibration. The condition that a supergravity model have an F-theory realization imposes constraints which can be expressed in terms of this lattice. The analysis of models which satisfy known low-energy consistency conditions and yet violate F-theory constraints suggests possible novel constraints on low-energy supergravity theories.Comment: 41 pages, 1 figur

    Role of the mesoamygdaloid dopamine projection in emotional learning

    Get PDF
    Amygdala dopamine is crucially involved in the acquisition of Pavlovian associations, as measured via conditioned approach to the location of the unconditioned stimulus (US). However, learning begins before skeletomotor output, so this study assessed whether amygdala dopamine is also involved in earlier 'emotional' learning. A variant of the conditioned reinforcement (CR) procedure was validated where training was restricted to curtail the development of selective conditioned approach to the US location, and effects of amygdala dopamine manipulations before training or later CR testing assessed. Experiment 1a presented a light paired (CS+ group) or unpaired (CS- group) with a US. There were 1, 2 or 10 sessions, 4 trials per session. Then, the US was removed, and two novel levers presented. One lever (CR+) presented the light, and lever pressing was recorded. Experiment 1b also included a tone stimulus. Experiment 2 applied intra-amygdala R(+) 7-OH-DPAT (10 nmol/1.0 A mu l/side) before two training sessions (Experiment 2a) or a CR session (Experiment 2b). For Experiments 1a and 1b, the CS+ group preferred the CR+ lever across all sessions. Conditioned alcove approach during 1 or 2 training sessions or associated CR tests was low and nonspecific. In Experiment 2a, R(+) 7-OH-DPAT before training greatly diminished lever pressing during a subsequent CR test, preferentially on the CR+ lever. For Experiment 2b, R(+) 7-OH-DPAT infusions before the CR test also reduced lever pressing. Manipulations of amygdala dopamine impact the earliest stage of learning in which emotional reactions may be most prevalent
    corecore