3,995 research outputs found
Inference of random walk models to describe leukocyte migration
While the majority of cells in an organism are static and remain relatively immobile in their tissue, migrating cells occur commonly during developmental processes and are crucial for a functioning immune response. The mode of migration has been described in terms of various types of random walks. To understand the details of the migratory behaviour we rely on mathematical models and their calibration to experimental data. Here we propose an approximate Bayesian inference scheme to calibrate a class of random walk models characterized by a specific, parametric particle re-orientation mechanism to observed trajectory data. We elaborate the concept of transition matrices (TMs) to detect random walk patterns and determine a statistic to quantify these TM to make them applicable for inference schemes. We apply the developed pipeline to in vivo trajectory data of macrophages and neutrophils, extracted from zebrafish that had undergone tail transection. We find that macrophage and neutrophils exhibit very distinct biased persistent random walk patterns, where the strengths of the persistence and bias are spatio-temporally regulated. Furthermore, the movement of macrophages is far less persistent than that of neutrophils in response to wounding
Colour-electric spectral function at next-to-leading order
The spectral function related to the correlator of two colour-electric fields
along a Polyakov loop determines the momentum diffusion coefficient of a heavy
quark near rest with respect to a heat bath. We compute this spectral function
at next-to-leading order, O(alpha_s^2), in the weak-coupling expansion. The
high-frequency part of our result (omega >> T), which is shown to be
temperature-independent, is accurately determined thanks to asymptotic freedom;
the low-frequency part of our result (omega << T), in which Hard Thermal Loop
resummation is needed in order to cure infrared divergences, agrees with a
previously determined expression. Our result may help to calibrate the overall
normalization of a lattice-extracted spectral function in a perturbative
frequency domain T << omega << 1/a, paving the way for a non-perturbative
estimate of the momentum diffusion coefficient at omega -> 0. We also evaluate
the colour-electric Euclidean correlator, which could be directly compared with
lattice simulations. As an aside we determine the Euclidean correlator in the
lattice strong-coupling expansion, showing that through a limiting procedure it
can in principle be defined also in the confined phase of pure Yang-Mills
theory, even if a practical measurement could be very noisy there.Comment: 38 page
Perspectives on the Trypanosoma cruzi-host cell receptor interaction
Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets
Human Mas-related G protein-coupled receptors-X1 induce chemokine receptor 2 expression in rat dorsal root ganglia neurons and release of chemokine ligand 2 from the human LAD-2 mast cell line
Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain
Transport Through Andreev Bound States in a Graphene Quantum Dot
Andreev reflection-where an electron in a normal metal backscatters off a
superconductor into a hole-forms the basis of low energy transport through
superconducting junctions. Andreev reflection in confined regions gives rise to
discrete Andreev bound states (ABS), which can carry a supercurrent and have
recently been proposed as the basis of qubits [1-3]. Although signatures of
Andreev reflection and bound states in conductance have been widely reported
[4], it has been difficult to directly probe individual ABS. Here, we report
transport measurements of sharp, gate-tunable ABS formed in a
superconductor-quantum dot (QD)-normal system, which incorporates graphene. The
QD exists in the graphene under the superconducting contact, due to a
work-function mismatch [5, 6]. The ABS form when the discrete QD levels are
proximity coupled to the superconducting contact. Due to the low density of
states of graphene and the sensitivity of the QD levels to an applied gate
voltage, the ABS spectra are narrow, can be tuned to zero energy via gate
voltage, and show a striking pattern in transport measurements.Comment: 25 Pages, included SO
Spin polarization of carriers in InGaAs self-assembled quantum rings inserted in GaAs-AlGaAs resonant tunneling devices
In this work, we have investigated transport and polarization resolved photoluminescence (PL) of n-type GaAs-AlGaAs resonant tunneling diodes (RTDs) containing a layer of InGaAs self-assembled quantum rings (QRs) in the quantum well (QW). All measurements were performed under applied voltage, magnetic fields up to 15 T and using linearly polarized laser excitation. It was observed that the QRs’ PL intensity and the circular polarization degree (CPD) oscillate periodically with applied voltage under high magnetic fields at 2 K. Our results demonstrate an effective voltage control of the optical and spin properties of InGaAs QRs inserted into RTDs
A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry
We present here a review of the fundamental topics of Hartree-Fock theory in
Quantum Chemistry. From the molecular Hamiltonian, using and discussing the
Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock
equations for the electronic problem. Special emphasis is placed in the most
relevant mathematical aspects of the theoretical derivation of the final
equations, as well as in the results regarding the existence and uniqueness of
their solutions. All Hartree-Fock versions with different spin restrictions are
systematically extracted from the general case, thus providing a unifying
framework. Then, the discretization of the one-electron orbitals space is
reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition
of the basic underlying concepts related to the construction and selection of
Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we
close the review with a section in which the most relevant modern developments
(specially those related to the design of linear-scaling methods) are commented
and linked to the issues discussed. The whole work is intentionally
introductory and rather self-contained, so that it may be useful for non
experts that aim to use quantum chemical methods in interdisciplinary
applications. Moreover, much material that is found scattered in the literature
has been put together here to facilitate comprehension and to serve as a handy
reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and
subeqn package
Impact Factor: outdated artefact or stepping-stone to journal certification?
A review of Garfield's journal impact factor and its specific implementation
as the Thomson Reuters Impact Factor reveals several weaknesses in this
commonly-used indicator of journal standing. Key limitations include the
mismatch between citing and cited documents, the deceptive display of three
decimals that belies the real precision, and the absence of confidence
intervals. These are minor issues that are easily amended and should be
corrected, but more substantive improvements are needed. There are indications
that the scientific community seeks and needs better certification of journal
procedures to improve the quality of published science. Comprehensive
certification of editorial and review procedures could help ensure adequate
procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table
Mechanical Strength of 17 134 Model Proteins and Cysteine Slipknots
A new theoretical survey of proteins' resistance to constant speed stretching
is performed for a set of 17 134 proteins as described by a structure-based
model. The proteins selected have no gaps in their structure determination and
consist of no more than 250 amino acids. Our previous studies have dealt with
7510 proteins of no more than 150 amino acids. The proteins are ranked
according to the strength of the resistance. Most of the predicted top-strength
proteins have not yet been studied experimentally. Architectures and folds
which are likely to yield large forces are identified. New types of potent
force clamps are discovered. They involve disulphide bridges and, in
particular, cysteine slipknots. An effective energy parameter of the model is
estimated by comparing the theoretical data on characteristic forces to the
corresponding experimental values combined with an extrapolation of the
theoretical data to the experimental pulling speeds. These studies provide
guidance for future experiments on single molecule manipulation and should lead
to selection of proteins for applications. A new class of proteins, involving
cystein slipknots, is identified as one that is expected to lead to the
strongest force clamps known. This class is characterized through molecular
dynamics simulations.Comment: 40 pages, 13 PostScript figure
- …
