161 research outputs found
Lateral Habenula Gone Awry in Depression: Bridging Cellular Adaptations With Therapeutics.
Depression is a highly heterogeneous disease characterized by symptoms spanning from anhedonia and behavioral despair to social withdrawal and learning deficit. Such diversity of behavioral phenotypes suggests that discrete neural circuits may underlie precise aspects of the disease, rendering its treatment an unmet challenge for modern neuroscience. Evidence from humans and animal models indicate that the lateral habenula (LHb), an epithalamic center devoted to processing aversive stimuli, is aberrantly affected during depression. This raises the hypothesis that rescuing maladaptations within this nucleus may be a potential way to, at least partially, treat aspects of mood disorders. In this review article, we will discuss pre-clinical and clinical evidence highlighting the role of LHb and its cellular adaptations in depression. We will then describe interventional approaches aiming to rescue LHb dysfunction and ultimately ameliorate depressive symptoms. Altogether, we aim to merge the mechanistic-, circuit-, and behavioral-level knowledge obtained about LHb maladaptations in depression to build a general framework that might prove valuable for potential therapeutic interventions
Synaptic inhibition in the lateral habenula shapes reward anticipation
The lateral habenula (LHb) supports learning processes enabling the prediction of upcoming rewards. While reward-related stimuli decrease the activity of LHb neurons, whether this anchors on synaptic inhibition to guide reward-driven behaviors remains poorly understood. Here, we combine in vivo two-photon calcium imaging with Pavlovian conditioning in mice and report that anticipatory licking emerges along with decreases in cue-evoked calcium signals in individual LHb neurons. In vivo multiunit recordings and pharmacology reveal that the cue-evoked reduction in LHb neuronal firing relies on GABAA-receptor activation. In parallel, we observe a postsynaptic potentiation of GABAA-receptor-mediated inhibition, but not excitation, onto LHb neurons together with the establishment of anticipatory licking. Finally, strengthening or weakening postsynaptic inhibition with optogenetics and GABAA-receptor manipulations enhances or reduces anticipatory licking, respectively. Hence, synaptic inhibition in the LHb shapes reward anticipation.
Keywords: GABA(A) receptors; cue-reward associative behavior; lateral habenula; synaptic inhibition; synaptic plasticit
Morphine withdrawal recruits lateral habenula cytokine signaling to reduce synaptic excitation and sociability.
The lateral habenula encodes aversive stimuli contributing to negative emotional states during drug withdrawal. Here we report that morphine withdrawal in mice leads to microglia adaptations and diminishes glutamatergic transmission onto raphe-projecting lateral habenula neurons. Chemogenetic inhibition of this circuit promotes morphine withdrawal-like social deficits. Morphine withdrawal-driven synaptic plasticity and reduced sociability require tumor necrosis factor-α (TNF-α) release and neuronal TNF receptor 1 activation. Hence, habenular cytokines control synaptic and behavioral adaptations during drug withdrawal
Somatic expression of LINE-1 elements in human tissues
LINE-1 expression damages host DNA via insertions and endonuclease-dependent DNA double-strand breaks (DSBs) that are highly toxic and mutagenic. The predominant tissue of LINE-1 expression has been considered to be the germ line. We show that both full-length and processed L1 transcripts are widespread in human somatic tissues and transformed cells, with significant variation in both L1 expression and L1 mRNA processing. This is the first demonstration that RNA processing is a major regulator of L1 activity. Many tissues also produce translatable spliced transcript (SpORF2). An Alu retrotransposition assay, COMET assays and 53BP1 foci staining show that the SpORF2 product can support functional ORF2 protein expression and can induce DNA damage in normal cells. Tests of the senescence-associated β-galactosidase expression suggest that expression of exogenous full-length L1, or the SpORF2 mRNA alone in human fibroblasts and adult stem cells triggers a senescence-like phenotype, which is one of the reported responses to DNA damage. In contrast to previous assumptions that L1 expression is germ line specific, the increased spectrum of tissues exposed to L1-associated damage suggests a role for L1 as an endogenous mutagen in somatic tissues. These findings have potential consequences for the whole organism in the form of cancer and mammalian aging
Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition
Revealing the mechanisms for neuronal somatic diversification remains a central challenge for understanding individual differences in brain organization and function. Here we show that an engineered human LINE-1 (for long interspersed nuclear element-1; also known as L1) element can retrotranspose in neuronal precursors derived from rat hippocampus neural stem cells. The resulting retrotransposition events can alter the expression of neuronal genes, which, in turn, can influence neuronal cell fate in vitro. We further show that retrotransposition of a human L1 in transgenic mice results in neuronal somatic mosaicism. The molecular mechanism of action is probably mediated through Sox2, because a decrease in Sox2 expression during the early stages of neuronal differentiation is correlated with increases in both L1 transcription and retrotransposition. Our data therefore indicate that neuronal genomes might not be static, but some might be mosaic because of de novo L1 retrotransposition events.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62714/1/nature03663.pd
Many LINE1 elements contribute to the transcriptome of human somatic cells
Over 600 LINE 1 elements are shown to be transcribed in humans; 400 of these are full-length elements in the reference genome
Intronic L1 Retrotransposons and Nested Genes Cause Transcriptional Interference by Inducing Intron Retention, Exonization and Cryptic Polyadenylation
Transcriptional interference has been recently recognized as an unexpectedly complex and mostly negative regulation of genes. Despite a relatively few studies that emerged in recent years, it has been demonstrated that a readthrough transcription derived from one gene can influence the transcription of another overlapping or nested gene. However, the molecular effects resulting from this interaction are largely unknown.Using in silico chromosome walking, we searched for prematurely terminated transcripts bearing signatures of intron retention or exonization of intronic sequence at their 3' ends upstream to human L1 retrotransposons, protein-coding and noncoding nested genes. We demonstrate that transcriptional interference induced by intronic L1s (or other repeated DNAs) and nested genes could be characterized by intron retention, forced exonization and cryptic polyadenylation. These molecular effects were revealed from the analysis of endogenous transcripts derived from different cell lines and tissues and confirmed by the expression of three minigenes in cell culture. While intron retention and exonization were comparably observed in introns upstream to L1s, forced exonization was preferentially detected in nested genes. Transcriptional interference induced by L1 or nested genes was dependent on the presence or absence of cryptic splice sites, affected the inclusion or exclusion of the upstream exon and the use of cryptic polyadenylation signals.Our results suggest that transcriptional interference induced by intronic L1s and nested genes could influence the transcription of the large number of genes in normal as well as in tumor tissues. Therefore, this type of interference could have a major impact on the regulation of the host gene expression
Co-chaperones are limiting in a depleted chaperone network
To probe the limiting nodes in the chaperoning network which maintains cellular proteostasis, we expressed a dominant negative mutant of heat shock factor 1 (dnHSF1), the regulator of the cytoplasmic proteotoxic stress response. Microarray analysis of non-stressed dnHSF1 cells showed a two- or more fold decrease in the transcript level of 10 genes, amongst which are the (co-)chaperone genes HSP90AA1, HSPA6, DNAJB1 and HSPB1. Glucocorticoid signaling, which requires the Hsp70 and the Hsp90 folding machines, was severely impaired by dnHSF1, but fully rescued by expression of DNAJA1 or DNAJB1, and partially by ST13. Expression of DNAJB6, DNAJB8, HSPA1A, HSPB1, HSPB8, or STIP1 had no effect while HSP90AA1 even inhibited. PTGES3 (p23) inhibited only in control cells. Our results suggest that the DNAJ co-chaperones in particular become limiting in a depleted chaperoning network. Our results also suggest a difference between the transcriptomes of cells lacking HSF1 and cells expressing dnHSF1
Endogenous retrovirus-K promoter: a landing strip for inflammatory transcription factors?
Humans are symbiotic organisms; our genome is populated with a substantial number of endogenous retroviruses (ERVs), some remarkably intact, while others are remnants of their former selves. Current research indicates that not all ERVs remain silent passengers within our genomes; re-activation of ERVs is often associated with inflammatory diseases. ERVK is the most recently endogenized and transcriptionally active ERV in humans, and as such may potentially contribute to the pathology of inflammatory disease. Here, we showcase the transcriptional regulation of ERVK. Expression of ERVs is regulated in part by epigenetic mechanisms, but also depends on transcriptional regulatory elements present within retroviral long terminal repeats (LTRs). These LTRs are responsive to both viral and cellular transcription factors; and we are just beginning to appreciate the full complexity of transcription factor interaction with the viral promoter. In this review, an exploration into the inflammatory transcription factor sites within the ERVK LTR will highlight the possible mechanisms by which ERVK is induced in inflammatory diseases
- …
