13 research outputs found

    Impurity transport in Alcator C-Mod in the presence of poloidal density variation induced by ion cyclotron resonance heating

    Full text link
    Impurity particle transport in an ion cyclotron resonance heated Alcator C-Mod discharge is studied with local gyrokinetic simulations and a theoretical model including the effect of poloidal asymmetries and elongation. In spite of the strong minority temperature anisotropy in the deep core region, the poloidal asymmetries are found to have a negligible effect on the turbulent impurity transport due to low magnetic shear in this region, in agreement with the experimental observations. According to the theoretical model, in outer core regions poloidal asymmetries may contribute to the reduction of the impurity peaking, but uncertainties in atomic physics processes prevent quantitative comparison with experiments.Comment: 32 pages, 12 figure

    Correlation of the L-mode density limit with edge collisionality

    Full text link
    The "density limit" is one of the fundamental bounds on tokamak operating space, and is commonly estimated via the empirical Greenwald scaling. This limit has garnered renewed interest in recent years as it has become clear that ITER and many tokamak pilot plant concepts must operate near or above the widely-used Greenwald limit to achieve their objectives. Evidence has also grown that the Greenwald scaling - in its remarkable simplicity - may not capture the full complexity of the disruptive density limit. In this study, we assemble a multi-machine database to quantify the effectiveness of the Greenwald limit as a predictor of the L-mode density limit and identify alternative stability metrics. We find that a two-parameter dimensionless boundary in the plasma edge, ν,edgelimit=3.0βT,edge0.4\nu_{*\rm, edge}^{\rm limit} = 3.0 \beta_{T,{\rm edge}}^{-0.4}, achieves significantly higher accuracy (true negative rate of 97.7% at a true positive rate of 95%) than the Greenwald limit (true negative rate 86.1% at a true positive rate of 95%) across a multi-machine dataset including metal- and carbon-wall tokamaks (AUG, C-Mod, DIII-D, and TCV). The collisionality boundary presented here can be applied for density limit avoidance in current devices and in ITER, where it can be measured and responded to in real time.Comment: 27 pages, 9 figure

    Plasma edge and plasma-wall interaction modelling

    No full text
    Robust power exhaust schemes employing impurity seeding are needed for target operational scenarios in present day tokamak devices with metallic plasma-facing components (PFCs). For an electricity-producing fusion power plant at power density Psep/R>15MW/m divertor detachment is a requirement for heat load mitigation. 2D plasma edge transport codes like the SOLPS code as well as plasma-wall interaction (PWI) codes are key to disentangle relevant physical processes in power and particle exhaust. With increased quantitative credibility in such codes more realistic and physically sound estimates of the life-time expectations and performance of metallic PFCs can be accomplished for divertor conditions relevant for ITER and DEMO. An overview is given on the recent progress of plasma edge and PWI modelling activities for (carbon-free) metallic devices, that include results from JET with the ITER-like wall, ASDEX Upgrade and Alcator C-mod. It is observed that metallic devices offer an opportunity to progress the understanding of underlying plasma physics processes in the edge. The validation of models can be substantially improved by eliminating carbon from the experiment as well as from the numerical system with reduced degrees of freedom as no chemical sputtering from amorphous carbon layers and no carbon or hydro-carbon transport are present. With the absence of carbon as the primary plasma impurity and given the fact that the physics of the PWI at metallic walls is less complex it is possible to isolate the crucial plasma physics processes relevant for particle and power exhaust. For a reliable 2D dissipative plasma exhaust model these are: cross-field drifts, complete kinetic neutral physics, geometry effects (including main-chamber, divertor and sub-divertor structures), SOL transport reflecting also the non-diffusive nature of anomalous transport, as well as transport within the pedestal region in case of significant edge impurity radiation affecting pedestal pressure and hence Psep.Peer reviewe

    Plasma edge and plasma-wall interaction modelling

    No full text
    Robust power exhaust schemes employing impurity seeding are needed for target operational scenarios in present day tokamak devices with metallic plasma-facing components (PFCs). For an electricity-producing fusion power plant at power density Psep/R>15MW/m divertor detachment is a requirement for heat load mitigation. 2D plasma edge transport codes like the SOLPS code as well as plasma-wall interaction (PWI) codes are key to disentangle relevant physical processes in power and particle exhaust. With increased quantitative credibility in such codes more realistic and physically sound estimates of the life-time expectations and performance of metallic PFCs can be accomplished for divertor conditions relevant for ITER and DEMO. An overview is given on the recent progress of plasma edge and PWI modelling activities for (carbon-free) metallic devices, that include results from JET with the ITER-like wall, ASDEX Upgrade and Alcator C-mod. It is observed that metallic devices offer an opportunity to progress the understanding of underlying plasma physics processes in the edge. The validation of models can be substantially improved by eliminating carbon from the experiment as well as from the numerical system with reduced degrees of freedom as no chemical sputtering from amorphous carbon layers and no carbon or hydro-carbon transport are present. With the absence of carbon as the primary plasma impurity and given the fact that the physics of the PWI at metallic walls is less complex it is possible to isolate the crucial plasma physics processes relevant for particle and power exhaust. For a reliable 2D dissipative plasma exhaust model these are: cross-field drifts, complete kinetic neutral physics, geometry effects (including main-chamber, divertor and sub-divertor structures), SOL transport reflecting also the non-diffusive nature of anomalous transport, as well as transport within the pedestal region in case of significant edge impurity radiation affecting pedestal pressure and hence Psep.Peer reviewe

    Surface heat flux feedback controlled impurity seeding experiments with Alcator C-Mod’s high-Z vertical target plate divertor: performance, limitations and implications for fusion power reactors

    No full text
    The Alcator C-Mod team has recently developed a feedback system to measure and control surface heat flux in real-time. The system uses real-time measurements of surface heat flux from surface thermocouples and a pulse-width modulated piezo valve to inject low-Z impurities (typically N2) into the private flux region. It has been used in C-Mod to mitigate peak surface heat fluxes >40 MW/m2 down to 1. While the system works quite well under relatively steady conditions, use of it during transients has revealed important limitations on feedback control of impurity seeding in conventional vertical target plate divertors. In some cases, the system is unable to avoid plasma reattachment to the divertor plate or the formation of a confinement-damaging x-point MARFE. This is due to the small operational window for mitigated heat flux in the parameters of incident plasma heat flux, plasma density, and impurity density as well as the relatively slow response of the impurity gas injection system compared to plasma transients. Given the severe consequences for failure of such a system to operate reliably in a reactor, there is substantial risk that the conventional vertical target plate divertor will not provide an adequately controllable system in reactor-class devices. These considerations motivate the need to develop passively stable, highly compliant divertor configurations and experimental facilities that can test such possible solutions

    Validation of IMEP on Alcator C-Mod and JET-ILW ELMy H-mode plasmas

    No full text
    Abstract The recently developed integrated model based on engineering parameters (IMEP) (Luda et al 2020 Nucl. Fusion 61 126048; Luda et al 2021 Nucl. Fusion 60 036023), so far validated on ASDEX Upgrade, has been tested on a database of 3 Alcator C-Mod and 55 JET-ILW ELMy (type I) H-mode stationary phases. The empirical pedestal transport model included in IMEP, consisting now of imposing a fixed value of R &lt; ∇ T e &gt; / T e , t o p = − 82.5 , allows an accurate prediction of the pedestal top temperature (when the pedestal top density is fixed to the experimental measurements) across these three machines with different sizes, when the pedestal is peeling–ballooning (PB) limited. Cases far from the ideal PB boundary, corresponding to high edge Spitzer resistivity, are instead strongly overpredicted by IMEP. A comparison between the predictions of Europed and IMEP for a subset of JET-ILW cases shows that IMEP can more accurately reproduce the experimental pedestal width. This allows IMEP to better capture profile effects on the pedestal stability, and therefore to correctly describe the negative effect of fueling on the pedestal pressure for PB limited cases. A strong correlation between the separatrix density and the fueling rate has been identified for a subset of JET-ILW cases, when taking into account different divertor configurations. Overall, these promising results encourage further developments of integrated models to obtain reliable predictions of pedestal and global confinement using only engineering parameters for present and future machines.</jats:p
    corecore