1,830 research outputs found

    Electronic Tuning of Mixed Quinoidal‐Aromatic Conjugated Polyelectrolytes: Direct Ionic Substitution on Polymer Main‐Chains

    Get PDF
    The synthesis of conjugated polymers with ionic substituents directly bound to their main chain repeat units is a strategy for generating strongly electron-accepting conjugated polyelectrolytes, as demonstrated through the synthesis of a series of ionic azaquinodimethane (iAQM) compounds. The introduction of cationic substituents onto the quinoidal para-azaquinodimethane (AQM) core gives rise to a strongly electron-accepting building block, which can be employed in the synthesis of ionic small molecules and conjugated polyelectrolytes (CPEs). Electrochemical measurements alongside theoretical calculations indicate notably low-lying LUMO values for the iAQMs. The optical band gaps measured for these compounds are highly tunable based on structure, ranging from 2.30 eV in small molecules down to 1.22 eV in polymers. The iAQM small molecules and CPEs showcase the band gap reduction effects of combining the donor-acceptor strategy with the bond-length alternation reduction strategy. As a demonstration of their utility, the iAQM CPEs so generated were used as active agents in photothermal therapy

    A hexahomotrioxacalix[3]arene-based ditopic receptor for alkylammonium ions controlled by Ag + ions 4

    Get PDF
    A receptor cone-1 based on a hexahomotrioxacalix[3]arene bearing three pyridyl groups 21 was successfully synthesized, which has a C3-symmetric conformation and is capable of binding 22 alkylammonium and metal ions simultaneously in a cooperative fashion. It can bind 23 alkylammonium ions through the -cavity formed by three aryl rings. This behaviour is consistent 24 with the cone-in/cone-out conformational rearrangement needed to reorganize the cavity for 25 endo-complexation. As a C3-symmetrical pyridyl-substituted calixarene, receptor cone-1 can also 26 bind a Ag + ion and the nitrogen atoms are turned towards the inside of the cavity and interact with 27 Ag +. After complexation of tris(2-pyridylamide) derivative receptor cone-1 with Ag + , the original 28 C3-symmetry was retained and higher complexation selectivity for n-BuNH3 + versus t-BuNH3 + was 29 observed. Thus, it is believed that this receptor will have a role to play in the sensing, detection, and 30 recognition of Ag + and n-BuNH3 + ions. 3

    A Most Unusual Zeolite Templating: Cage to Cage Connection of One Guest Molecule

    Get PDF
    An unusual case of a diquaternary ammonium dication, with large bulky end groups built from the tropane moiety and connected by a C4 methylene chain, is found to reside in zeolite SSZ-35 (STF). The structure of the guest/host product is such that the tropane bicylic entities reside in the shallow cavities of the cages of the STF structure and the C4 methylene chain runs through the 10-ring (~5.5 Å) window that connects the cages. This is a most unusual (and energy-intensive) templating of a zeolite structure with the guest molecule spanning two unit cells. The unusual result was found by single crystal studies with the addition of the use of the SQUEEZE program to show a consistent fit for the guest molecule following from measured electron densities in the crystal structure work. These analyses were followed with MAS NMR studies to confirm the integrity of the diquaternary guest molecule in the host sieve. A few comparative diquaternary guest molecules in MFI zeolite are also studied

    A Convenient Synthetic Route to Partial-Cone p-Carboxylatocalix[4]arenes.

    Get PDF
    p-Carboxylatocalix[n]arenes have emerged as useful building blocks for the construction of a diverse range of supramolecular assemblies. A convenient route to a p-carboxylatocalix[4]arene that is locked in a partial-cone conformation is presented. The conformation gives the molecule markedly different topological directionality relative to those previously used in self- and metal-directed assembly studies

    Regio-selective substitution at the 1,3- and 6,8-positions of pyrene for the construction of small dipolar molecules

    Get PDF
    © 2015 American Chemical Society. This article presents a novel asymmetrical functionalization strategy for the construction of dipolar molecules via efficient regioselective functionalization along the Z-axis of pyrene at both the 1,3- and 6,8-positions. Three asymmetrical ly substituted 1,3-diphenyl-6,8-R-disubsituted pyrenes were fully characterized by X-ray crystallography, photophysical properties, electrochemistry, and density functional theory calculations

    A Three-Dimensional Dynamic Supramolecular "Sticky Fingers" Organic Framework.

    Get PDF
    Engineering high-recognition host-guest materials is a burgeoning area in basic and applied research. The challenge of exploring novel porous materials with advanced functionalities prompted us to develop dynamic crystalline structures promoted by soft interactions. The first example of a pure molecular dynamic crystalline framework is demonstrated, which is held together by means of weak "sticky fingers" van der Waals interactions. The presented organic-fullerene-based material exhibits a non-porous dynamic crystalline structure capable of undergoing single-crystal-to-single-crystal reactions. Exposure to hydrazine vapors induces structural and chemical changes that manifest as toposelective hydrogenation of alternating rings on the surface of the [60]fullerene. Control experiments confirm that the same reaction does not occur when performed in solution. Easy-to-detect changes in the macroscopic properties of the sample suggest utility as molecular sensors or energy-storage materials

    Effect of Alkyl Chain Length and Linker Atom on the Crystal Packing in 6,12-Dialkoxy- And 6,12-Dialkylsulfanyl-Benzo[1,2- b:4,5- b′]bis[ b]benzothiophenes

    Get PDF
    The effect of varying the chain length on the solid state conformation and packing of 6,12-dialkoxy- and 6,12-dialkylsulfanyl-benzo[1,2-b:4,5-b′]bis[b]benzothiophenes has been studied. The compounds were prepared by SNAr reaction of 6,12-difluorbenzo[1,2-b:4,5-b′]bis[b]benzothiophene with alkoxides or alkanethiolates derived from C7-C10 alcohols and alkanethiols. Single crystal X-ray diffraction analysis revealed that all but two compounds crystallize in the triclinic space group P1. Two compounds were obtained as monoclinic crystals with space group P21/c. The alkoxy substituted compounds adopted a molecular conformation with a step from the core and a gauche conformation about the C1′-C2′ bond placing the alkyl chains close to parallel with the pentacyclic arene ring system, whereas in the alkylsufanyl derivatives, the alkyl chains were arranged strongly deviated from the plane of the ring, with the sulfur atom antiperiplanar to C3′ of the alkyl chain. NMR measurement of T1 relaxation in CDCl3 showed both the alkoxy and alkylsulfanyl substituents to be freely rotating at ambient temperature in solution, indicating the orientation of the chains in the solid state was due to packing interactions during crystallization
    corecore