37 research outputs found
Recommended from our members
Preliminary Interdependency Analysis (PIA): Method and tool support
Estimating the Background Ventilation Rates in New-Build UK Dwellings – is n50/20 appropriate?
In the UK, a rule of thumb applied to air permeability is commonly employed when estimating background ventilation rates from pressurisation test data. However, this may lead to significant errors in estimating the infiltration rates in UK new-build dwellings, resulting in poor estimation of the dwellings in-use energy and CO2 emissions, and the adoption of ventilation strategies leading to either unacceptable indoor air quality or unnecessary energy consumption. In this paper, a preliminary investigation into the applicability of the rule of thumb is undertaken. Background ventilation rates in four new-build dwellings in the UK are determined using the tracer-gas decay method and also the pressurisation (blower-door) method coupled with both the conventional n50/20 and (in the UK) q50/20 rule of thumb, and Sherman’s modified rule of thumb, which takes into account other building-related factors. The conventional method over-estimated the air-change rate in two of the dwellings and under-estimated it in the other two dwellings. The modified rule of thumb produced comparable results for two of the dwellings, but significantly underestimated the air-change rate in the other two dwellings. These results suggest that more work needs to be done to devise appropriate climate and building-related correction factors for the UK
Bridging the domestic building fabric performance gap
It is recognized that there is often a discrepancy between the measured fabric thermal performance of dwellings as built and the predicted performance of the same dwellings and that the magnitude of this difference in performance can be quite large. This paper presents the results of a number of in-depth building fabric thermal performance tests undertaken on three case study dwellings located on two separate Passivhaus developments in the UK: one masonry cavity and the other two timber-frame. The results from the tests revealed that all the case study dwellings performed very close to that predicted. This is in contrast with other work that has been undertaken regarding the performance of the building fabric, which indicates that a very wide range of performance exists in new-build dwellings in the UK, and that the difference between the measured and predicted fabric performance can be greater than 100%. Despite the small non-random size of the sample, the results suggest that careful design coupled with the implementation of appropriate quality control systems, such as those required to attain Passivhaus Certification, may be conducive to delivering dwellings that begin to ‘bridge the gap’ between measured and predicted fabric performance
Post-construction thermal testing: Some recent measurements
In the UK, it has become apparent in recent years that there is often a discrepancy between the steady-state predicted and the measured in situ thermal performance of the building fabric, with the measured in situ performance being greater than that predicted. This discrepancy or gap in the thermal performance of the building fabric is commonly referred to as the building fabric 'performance gap'. This paper presents the results and key messages obtained from undertaking a whole-building heat loss test (a coheating test) on seven new-build dwellings as part of the Technology Strategy Board's Building Performance Evaluation Programme. While the total number of dwellings involved in the work reported here is small, the results illustrate that a wide range of discrepancies in thermal performance was measured for the tested dwellings. Despite this, the results also indicate that it is possible to construct dwellings where the building fabric performs thermally more or less as predicted, thus effectively bridging the traditional building fabric performance gap that exists in mainstream housing in the UK
A UK practitioner view of domestic energy performance measurement
There is a growing body of evidence concerning the energy efficiency performance of domestic buildings in the UK, driven by policy-based agenda, such as the need for zero carbon dioxide homes by 2016 for new build homes, and Green Deal and energy company obligation for sustainable refurbishment. While there have been a number of studies funded and results presented in this area, little work has been done to understand the drivers, practices and issues of data collection and analysis. There are a number of major building performance evaluation (BPE) studies in the UK, yet behind many of these research projects are practical issues of data loss, experimental error, data analysis variances and resident issues that are common when studies move from the actual to the living lab. In this paper the issues of domestic energy are addressed by leading BPE practitioners in the UK. They identify issues of client demands, technical failure, costs and implementation. The work provides insights of both academic and industry-based practitioners and considers not only the practicalities of building performance studies, but also implications for these types of studies in the future
A socio-technical approach to post-occupancy evaluation: interactive adaptability in domestic retrofit
Understanding the process of domestic retrofit is important for learning and innovation. This is particularly the case for low carbon retrofits such as those undertaken under the UK's Retrofit for the Future (RftF) programme, with its aim to achieve an overall 80% carbon reduction by 2050. Current post-occupancy evaluation (POE) research has both theoretical and methodological limitations with implications for technical and behavioural research in the built environment. Drawing on relevant ideas and concepts from social practice theory and science and technology studies, principally prefiguration (constraints/enablement), black-boxing, heating and cooling practices, this paper demonstrates how the relationship between buildings and people could be reconceptualized as mutually constitutive and co-evolving through a process of ‘interactive adaptation’. The concept of ‘interactive adaptation’ is explored through a novel approach to integrating physical and social data collected from a sample of dwellings selected from the RftF programme. Analysis yields insights into the influences and pathways of interactive adaptation resulting from retrofit technology and practices. The implications of these insights for policy-makers, the research community and practitioners are discussed: end-use energy demand policy needs to be informed by a socio-technical approach
