786 research outputs found
SGN Database: From QTLs to Genomes
Quantitative trait loci (QTL) analysis is used to dissect the genetic basis underlying polygenic traits. Several public databases have been storing and making QTL data available to research communities. To our knowledge, current QTL databases rely on manual curation where curators read literature and extract relevant QTL information to store in databases. Evidently, this approach is expensive in terms of expert manpower and time use and limits the type of data that can be curated. At the Solanaceae Genomics Network (SGN) ("http://sgn.cornell.edu":http://sgn.cornell.edu), we have developed a database to store raw phenotype and genotype data from QTL studies, perform, on the fly, QTL analysis using R/QTL statistical software ("http://www.rqtl.org":http://www.rqtl.org) and visualize QTLs on a genetic map. Users can identify peak, and flanking markers for QTLs of traits of interest. The QTL database is integrated with other SGN databases (eg. Marker, BACs, and Unigenes), and analysis tools such as the Comparative Map Viewer. Using the comparative map viewer, users can compare chromosome with QTL regions to genetic maps of interest from the same or different Solanaceae species. As the tomato genome sequencing advances, users can also identify corresponding BAC sequences or locations on the tomato physical map, which can be suggestive of candidate genes for a trait of interest.

Furthermore at SGN, images, quantitative phenotype and genotype data, publications, genetic maps generated by QTL studies are displayed and available for download. Currently, data from three F2 and two backcross population QTL studies on fruit morphology traits (18 – 46 traits per population) is available at the SGN website for viewing at population, accession, and trait levels. Traits are described using ontology terms. Phenotype data is presented in tabular and graphical formats such as frequency distributions with basic descriptive statistics. Mapping data showing location of parental alleles on individual accession genetic maps is also available.

SGN is a public database hosted at Boyce Thomson Institute, Cornell University, and funded by USDA CSREES and NSF
The SOL Genomics Network Model: Making Community Annotation Work
The concept of community annotation is a growing discipline for achieving participation of the research community in depositing up‐to‐date knowledge in biological databases.
The Solanaceae Genomics Network ("SGN":http://sgn.cornell.edu/) is a clade‐oriented database (COD) focusing on plants of the nightshade family, including tomato, potato, pepper, eggplant, and tobacco, and is one of the bioinformatics nodes of the international tomato genome sequencing project. One of our major efforts is linking Solanaceae phenotype information with the underlying genes, and subsequently the genome. As part of this goal, SGN has introduced a database for locus names and descriptors, and a database for phenotypes of natural and induced variation. These two databases have web interfaces that allow cross references, associations with tomato gene models, and in‐house curated information of sequences, literature, ontologies, gene networks, and the Solanaceae biochemical pathways database ("SolCyc":http://solcyc.sgn.cornell.edu). All of our curator tools are open for online community annotation, through specially assigned “submitter” accounts. 

Currently the community database consists of 5,548 phenotyped accessions, and 5,739 curated loci, out of which more than 300 loci where contributed or annotated by 66 active submitters, creating a database that is truly community driven.
This framework is easily adaptable for other projects working on other taxa (for example see "http://chlamybase.org":http://chlamybase.org), greatly expanding the application of this user‐friendly online annotation system. Community participation is fostered by an active outreach program that includes contacting potential submitters via emails, at meetings and conferences, and by promoting featured user submitted annotations on the SGN homepage. The source code and database schema for all SGN functionalities are freely available. Please contact SGN at "sgn‐feedback[at]sgn.cornell.edu":mailto:[email protected] for more information
Jane Finch Community Research Partnership : November 29, 2016 Symposium Report
The Jane and Finch Community Research Partnership (JFCRP) held a symposium that brought together community residents, organizations, and York University academics on Tuesday November 29, 2016. The gathering addressed challenges in accessing research about or conducted in the Jane and Finch community as well as the ongoing challenging relationship between Jane-Finch and York University around research ethics. The need for a community ethics process is necessary to guide and inform how research is conducted in the community. The day was informed by a JFCRP event held June 2016 and a previous symposium, Connect the Dots, hosted on December 11, 2013.This JFCRP project was funded by the York University-TD Community Engagement Centre Catalyst Fund 2016-2017
Aqueous Solubility of Piperazine and 2-Amino-2-methyl-1-propanol plus Their Mixtures Using an Improved Freezing-Point Depression Method
solGS: a webbased tool for genomic selection
Background: Genomic selection (GS) promises to improve accuracy in estimating breeding values and genetic gain for quantitative traits compared to traditional breeding methods. Its reliance on high-throughput genome-wide markers and statistical complexity, however, is a serious challenge in data management, analysis, and sharing. A bioinformatics infrastructure for data storage and access, and user-friendly web-based tool for analysis and sharing output is needed to make GS more practical for breeders.
Results: We have developed a web-based tool, called solGS, for predicting genomic estimated breeding values (GEBVs) of individuals, using a Ridge-Regression Best Linear Unbiased Predictor (RR-BLUP) model. It has an intuitive web-interface for selecting a training population for modeling and estimating genomic estimated breeding values of selection candidates. It estimates phenotypic correlation and heritability of traits and selection indices of individuals. Raw data is stored in a generic database schema, Chado Natural Diversity, co-developed by multiple database groups. Analysis output is graphically visualized and can be interactively explored online or downloaded in text format. An instance of its implementation can be accessed at the NEXTGEN Cassava breeding database, http://cassavabase.org/solgs.
Conclusions: solGS enables breeders to store raw data and estimate GEBVs of individuals online, in an intuitive and interactive workflow. It can be adapted to any breeding program.Background: Genomic selection (GS) promises to improve accuracy in estimating breeding values and genetic gain for quantitative traits compared to traditional breeding methods. Its reliance on high-throughput genome-wide markers and statistical complexity, however, is a serious challenge in data management, analysis, and sharing. A bioinformatics infrastructure for data storage and access, and user-friendly web-based tool for analysis and sharing output is needed to make GS more practical for breeders.
Results: We have developed a web-based tool, called solGS, for predicting genomic estimated breeding values (GEBVs) of individuals, using a Ridge-Regression Best Linear Unbiased Predictor (RR-BLUP) model. It has an intuitive web-interface for selecting a training population for modeling and estimating genomic estimated breeding values of selection candidates. It estimates phenotypic correlation and heritability of traits and selection indices of individuals. Raw data is stored in a generic database schema, Chado Natural Diversity, co-developed by multiple database groups. Analysis output is graphically visualized and can be interactively explored online or downloaded in text format. An instance of its implementation can be accessed at the NEXTGEN Cassava breeding database, http://cassavabase.org/solgs.
Conclusions: solGS enables breeders to store raw data and estimate GEBVs of individuals online, in an intuitive and interactive workflow. It can be adapted to any breeding program.Background: Genomic selection (GS) promises to improve accuracy in estimating breeding values and genetic gain for quantitative traits compared to traditional breeding methods. Its reliance on high-throughput genome-wide markers and statistical complexity, however, is a serious challenge in data management, analysis, and sharing. A bioinformatics infrastructure for data storage and access, and user-friendly web-based tool for analysis and sharing output is needed to make GS more practical for breeders.
Results: We have developed a web-based tool, called solGS, for predicting genomic estimated breeding values (GEBVs) of individuals, using a Ridge-Regression Best Linear Unbiased Predictor (RR-BLUP) model. It has an intuitive web-interface for selecting a training population for modeling and estimating genomic estimated breeding values of selection candidates. It estimates phenotypic correlation and heritability of traits and selection indices of individuals. Raw data is stored in a generic database schema, Chado Natural Diversity, co-developed by multiple database groups. Analysis output is graphically visualized and can be interactively explored online or downloaded in text format. An instance of its implementation can be accessed at the NEXTGEN Cassava breeding database, http://cassavabase.org/solgs.
Conclusions: solGS enables breeders to store raw data and estimate GEBVs of individuals online, in an intuitive and interactive workflow. It can be adapted to any breeding program.Background: Genomic selection (GS) promises to improve accuracy in estimating breeding values and genetic gain for quantitative traits compared to traditional breeding methods. Its reliance on high-throughput genome-wide markers and statistical complexity, however, is a serious challenge in data management, analysis, and sharing. A bioinformatics infrastructure for data storage and access, and user-friendly web-based tool for analysis and sharing output is needed to make GS more practical for breeders.
Results: We have developed a web-based tool, called solGS, for predicting genomic estimated breeding values (GEBVs) of individuals, using a Ridge-Regression Best Linear Unbiased Predictor (RR-BLUP) model. It has an intuitive web-interface for selecting a training population for modeling and estimating genomic estimated breeding values of selection candidates. It estimates phenotypic correlation and heritability of traits and selection indices of individuals. Raw data is stored in a generic database schema, Chado Natural Diversity, co-developed by multiple database groups. Analysis output is graphically visualized and can be interactively explored online or downloaded in text format. An instance of its implementation can be accessed at the NEXTGEN Cassava breeding database, http://cassavabase.org/solgs.
Conclusions: solGS enables breeders to store raw data and estimate GEBVs of individuals online, in an intuitive and interactive workflow. It can be adapted to any breeding program
solQTL: a tool for QTL analysis, visualization and linking to genomes at SGN database
BACKGROUND: A common approach to understanding the genetic basis of complex traits is through identification of associated quantitative trait loci (QTL). Fine mapping QTLs requires several generations of backcrosses and analysis of large populations, which is time-consuming and costly effort. Furthermore, as entire genomes are being sequenced and an increasing amount of genetic and expression data are being generated, a challenge remains: linking phenotypic variation to the underlying genomic variation. To identify candidate genes and understand the molecular basis underlying the phenotypic variation of traits, bioinformatic approaches are needed to exploit information such as genetic map, expression and whole genome sequence data of organisms in biological databases. DESCRIPTION: The Sol Genomics Network (SGN, http://solgenomics.net) is a primary repository for phenotypic, genetic, genomic, expression and metabolic data for the Solanaceae family and other related Asterids species and houses a variety of bioinformatics tools. SGN has implemented a new approach to QTL data organization, storage, analysis, and cross-links with other relevant data in internal and external databases. The new QTL module, solQTL, http://solgenomics.net/qtl/, employs a user-friendly web interface for uploading raw phenotype and genotype data to the database, R/QTL mapping software for on-the-fly QTL analysis and algorithms for online visualization and cross-referencing of QTLs to relevant datasets and tools such as the SGN Comparative Map Viewer and Genome Browser. Here, we describe the development of the solQTL module and demonstrate its application. CONCLUSIONS: solQTL allows Solanaceae researchers to upload raw genotype and phenotype data to SGN, perform QTL analysis and dynamically cross-link to relevant genetic, expression and genome annotations. Exploration and synthesis of the relevant data is expected to help facilitate identification of candidate genes underlying phenotypic variation and markers more closely linked to QTLs. solQTL is freely available on SGN and can be used in private or public mode
The effect of cryptocurrencies on the German payment ecosystem: a critical analysis of its future disruption potential
Purpose and Methodology We examine the disruption potential of crypto currencies on Germany’s payments ecosystem. A literature review is performed to characterize the novel technology as well as the German payments ecosystem. A consumer survey and expert interviews are also performed in order to gauge the views of potential users as well as those of the industry. Findings Cryptocurrencies are showed not to be a passing phenomenon in Germany. Rather, they will eventually disrupt the payments ecosystem. However, cryptocurrencies are not yet at a stage that would allow them to become a widely used payment means. The hindering issues underlying this conclusion are pinpointed
Reduced influenza viral neutralizing activity of natural human trimers of surfactant protein D
BACKGROUND. Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection. Common human polymorphisms of SP-D have been found in many human populations and associated with increased risk of certain infections. We recently reported that the Thr/Thr 11 form of SP-D is associated with low serum levels and assembles predominantly as trimers as opposed to the more common multimeric forms of SP-D. METHODS. Preliminary experiments were done to establish the effects of different monoclonal antibodies against SP-D on ability of SP-D to bind to or neutralize the virus. We then purified natural human trimeric and multimeric forms of SP-D from amniotic fluid and tested ability of these preparations to bind to IAV, to inhibit infectivity and hemagglutination activity of IAV in vitro. RESULTS. In initial experiments mAbs directed against different areas on the CRD of SP-D were found to have differing effects on antiviral activity. Using an mAb that did not interfere with antiviral activity of SP-D, we confirm that natural SP-D trimers had reduced ability to bind to IAV. In addition, the trimers had reduced ability to neutralize IAV as compared to natural human SP-D multimers as well as reduced hemagglutination inhibiting activity against several strains of IAV. Natural SP-D trimers also had different interactions with human neutrophil peptide defensins (HNPs) in viral neutralization assays as compared to multimeric SP-D. CONCLUSION. These studies indicate that a common human polymorphic form of SP-D may modulate host defense against IAV and give impetus to clinical studies correlating this genotype with risk for IAV infection in susceptible groups. We also show that mAbs directed against different areas on the carbohydrate recognition domain of SP-D can be useful for dissecting out different functional properties of the protein
Amicable Dispute Resolution in Civil and Commercial Matters in Ethiopia: Negotiation, Conciliation and Compromise
Amicable dispute settlement methods play a major role in the resolution of civil and commercial disputes. These mechanisms present advantages to the parties as compared to arbitration and litigation. The Civil Code of 1960 contains provisions on Conciliation and Compromise, which set out the minimum legal framework for practical use by disputing parties in civil and commercial matters. Conciliation and compromise are in the main regulated under Arts. 3318-3324 and 3307-3317 respectively. The Civil Procedure Code of 1965 also consists of several provisions on compromise (Arts. 274-277). Generally, disputes are legally and conveniently amenable and better resolved through these amicable dispute settlement methods. However, whether they are put in use entirely depends on the free will of the disputing parties’. They can only be resorted to whenever the disputing parties commit themselves to use them in their contractual agreements. For certain other disputes, these amicable dispute settlement mechanisms are compulsory; in such cases, policy rationale dictates that disputes of such nature should be swiftly resolved through amicable dispute settlement methods. Some other disputes are, however, vested exclusively in the courts. This article distinguishes arbitration from conciliation. It is discussed whether conciliation differs from mediation. Attempt has also been made to shed light on the nature and application of concilio-arbitration in Ethiopia. The legal framework underpinning negotiation, conciliation, and compromise is expounded. Furthermore, the legal lacunae in relation to conciliation is addressed.Key termsMediation · Conciliation · Compromise · Concilio-arbitratio
Recognition and enforcement of foreign arbitral awards in civil and commercial matters in Ethiopia
Ethiopia is not yet party to the New York Convention on the
Recognition and Enforcement of Foreign Arbitral Awards. It can also be
said that Ethiopian arbitration laws fail to cope with the emerging
modern laws and practices in international commercial arbitration.
However, as of 1965, with the introduction of the Civil Procedure Code
(CPC), rules on the recognition and enforcement of foreign judgments
and arbitral awards are set out whose interpretation, unfortunately, have
remained thus far inconsistent. Thus, the criteria must be clearly
interpreted and applied so that the rules can be conducive to the steadily
increasing practice of modern arbitration. This article attempts to shed
some light on these conditions
- …
