643 research outputs found
A common genetic target for environmental and heritable influences on aggressiveness in Drosophila
Environmental and genetic factors can modulate aggressiveness, but the biological mechanisms underlying their influence are largely unknown. Social experience with conspecifics suppresses aggressiveness in both vertebrate and invertebrate species, including Drosophila. We searched for genes whose expression levels correlate with the influence of social experience on aggressiveness in Drosophila by performing microarray analysis of head tissue from socially isolated (aggressive) vs. socially experienced (nonaggressive) male flies. Among {approx}200 differentially expressed genes, only one was also present in a gene set previously identified by profiling Drosophila strains subjected to genetic selection for differences in aggressiveness [Dierick HA, Greenspan RJ (2006) Nat Genet 38:1023–1031]. This gene, Cyp6a20, encodes a cytochrome P450. Social experience increased Cyp6a20 expression and decreased aggressiveness in a reversible manner. In Cyp6a20 mutants, aggressiveness was increased in group-housed but not socially isolated flies. These data identify a common genetic target for environmental and heritable influences on aggressiveness. Cyp6a20 is expressed in a subset of nonneuronal support cells associated with pheromone-sensing olfactory sensilla, suggesting that social experience may influence aggressiveness by regulating pheromone sensitivity
Impact of Serotonin 2C Receptor Null Mutation on Physiology and Behavior Associated with Nigrostriatal Dopamine Pathway Function
The impact of serotonergic neurotransmission on brain dopaminergic pathways has substantial relevance to many neuropsychiatric disorders. A particularly prominent role has been ascribed to the inhibitory effects of serotonin 2C receptor (5-HT2CR) activation on physiology and behavior mediated by the mesolimbic dopaminergic pathway, particularly in the terminal region of the nucleus accumbens. The influence of this receptor subtype on functions mediated by the nigrostriatal dopaminergic pathway is less clear. Here we report that a null mutation eliminating expression of 5-HT2CRs produces marked alterations in the activity and functional output of this pathway. 5-HT2CR mutant mice displayed increased activity of substantia nigra pars compacta (SNc) dopaminergic neurons, elevated baseline extracellular dopamine concentrations in the dorsal striatum (DSt), alterations in grooming behavior, and enhanced sensitivity to the stereotypic behavioral effects of D-amphetamine and GBR 12909. These psychostimulant responses occurred in the absence of phenotypic differences in drug-induced extracellular dopamine concentration, suggesting a phenotypic alteration in behavioral responses to released dopamine. This was further suggested by enhanced behavioral responses of mutant mice to the D1 receptor agonist SKF 81297. Differences in DSt D1 or D2 receptor expression were not found, nor were differences in medium spiny neuron firing patterns or intrinsic membrane properties following dopamine stimulation. We conclude that 5-HT2CRs regulate nigrostriatal dopaminergic activity and function both at SNc dopaminergic neurons and at a locus downstream of the DSt
Dissociable effects of 5-HT2C receptor antagonism and genetic inactivation on perseverance and learned non-reward in an egocentric spatial reversal task
Cognitive flexibility can be assessed in reversal learning tests, which are sensitive to modulation of 5-HT2C receptor (5-HT2CR) function. Successful performance in these tests depends on at least two dissociable cognitive mechanisms which may separately dissipate associations of previous positive and negative valence. The first is opposed by perseverance and the second by learned non-reward. The current experiments explored the effect of reducing function of the 5-HT2CR on the cognitive mechanisms underlying egocentric reversal learning in the mouse. Experiment 1 used the 5-HT2CR antagonist SB242084 (0.5 mg/kg) in a between-groups serial design and Experiment 2 used 5-HT2CR KO mice in a repeated measures design. Animals initially learned to discriminate between two egocentric turning directions, only one of which was food rewarded (denoted CS+, CS−), in a T- or Y-maze configuration. This was followed by three conditions; (1) Full reversal, where contingencies reversed; (2) Perseverance, where the previous CS+ became CS− and the previous CS− was replaced by a novel CS+; (3) Learned non-reward, where the previous CS− became CS+ and the previous CS+ was replaced by a novel CS-. SB242084 reduced perseverance, observed as a decrease in trials and incorrect responses to criterion, but increased learned non-reward, observed as an increase in trials to criterion. In contrast, 5-HT2CR KO mice showed increased perseverance. 5-HT2CR KO mice also showed retarded egocentric discrimination learning. Neither manipulation of 5-HT2CR function affected performance in the full reversal test. These results are unlikely to be accounted for by increased novelty attraction, as SB242084 failed to affect performance in an unrewarded novelty task. In conclusion, acute 5-HT2CR antagonism and constitutive loss of the 5-HT2CR have opposing effects on perseverance in egocentric reversal learning in mice. It is likely that this difference reflects the broader impact of 5HT2CR loss on the development and maintenance of cognitive function
Impact of serotonin 2C receptor null mutation on physiology and behavior associated with nigrostriatal dopamine pathway function
The impact of serotonergic neurotransmission on brain dopaminergic pathways has substantial relevance to many neuropsychiatric disorders. A particularly prominent role has been ascribed to the inhibitory effects of serotonin 2C receptor (5-HT2CR) activation on physiology and behavior mediated by the mesolimbic dopaminergic pathway, particularly in the terminal region of the nucleus accumbens. The influence of this receptor subtype on functions mediated by the nigrostriatal dopaminergic pathway is less clear. Here we report that a null mutation eliminating expression of 5-HT2CRs produces marked alterations in the activity and functional output of this pathway. 5-HT2CR mutant mice displayed increased activity of substantia nigra pars compacta (SNc) dopaminergic neurons, elevated baseline extracellular dopamine concentrations in the dorsal striatum (DSt), alterations in grooming behavior, and enhanced sensitivity to the stereotypic behavioral effects of D-amphetamine and GBR 12909. These psychostimulant responses occurred in the absence of phenotypic differences in drug-induced extracellular dopamine concentration, suggesting a phenotypic alteration in behavioral responses to released dopamine. This was further suggested by enhanced behavioral responses of mutant mice to the D1 receptor agonist SKF 81297. Differences in DSt D1 or D2 receptor expression were not found, nor were differences in medium spiny neuron firing patterns or intrinsic membrane properties following dopamine stimulation. We conclude that 5-HT2CRs regulate nigrostriatal dopaminergic activity and function both at SNc dopaminergic neurons and at a locus downstream of the DSt.peer-reviewe
Activation of Central Melanocortin Pathways by Fenfluramlne
D-fenfluramine (d-FEN) was once widely prescribed and was among the most effective weight loss drugs, but was withdrawn from clinical use because of reports of cardiac complications in a subset of patients. Discerning the neurobiology underlying the anorexic action of d-FEN may facilitate the development of new drugs to prevent and treat obesity. Through a combination of functional neuroanatomy, feeding, and electrophysiology studies in rodents, we show that d-FEN-induced anorexia requires activation of central nervous system melanocortin pathways. These results provide a mechanistic explanation of d-FEN\u27s anorexic actions and indicate that drugs targeting these downstream melanocortin pathways may prove to be effective and more selective antiobesity treatments
Automated Home-Cage Behavioural Phenotyping of Mice
Neurobehavioral analysis of mouse phenotypes requires the monitoring of mouse behavior over long
periods of time. Here, we describe a trainable computer vision system enabling the automated analysis
of complex mouse behaviors. We provide software and an extensive manually annotated video
database used for training and testing the system. Our system performs on par with human scoring, as
measured from ground-truth manual annotations of thousands of clips of freely behaving mice. As a
validation of the system, we characterized the home-cage behaviors of two standard inbred and two
non-standard mouse strains. From this data we were able to predict in a blind test the strain identity of
individual animals with high accuracy. Our video-based software will complement existing sensor
based automated approaches and enable an adaptable, comprehensive, high-throughput, fine-grained,
automated analysis of mouse behavior.McGovern Institute for Brain ResearchCalifornia Institute of Technology. Broad Fellows Program in Brain CircuitryNational Science Council (China) (TMS-094-1-A032
Central Serotonin and Melanocortin Pathways Regulating Energy Homeostasis
It is now established that the hypothalamus is essential in coordinating endocrine, autonomic, and behavioral responses to changes in energy availability. However, the interaction of key peptides, neuropeptides, and neurotransmitters systems within the hypothalamus has yet to be delineated. Recently, we investigated the mechanisms through which serotonergic (5-hydroxytryptamine, 5-HT) systems recruit leptin-responsive hypothalamic pathways, such as the melanocortin systems, to affect energy balance. Through a combination of functional neuroanatomy, feeding, and electrophysiology studies in rodents, we found that 5-HT drugs require functional melanocortin pathways to exert their effects on food intake. Specifically, we observed that anorectic 5-HT drugs activate pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (Arc). We provide evidence that the serotonin 2C receptor (5-HT2CR) is expressed on POMC neurons and contributes to this effect. Finally, we found that 5-HT drug-induced hypophagia is attenuated by pharmalogical or genetic blockade of downstream melanocortin 3 and 4 receptors. We review candidate brain regions expressing melanocortin 3 and 4 receptors that play a role in energy balance. A model is presented in which the activation of the melanocortin system is downstream of 5-HT and is necessary to produce the complete anorectic effect of 5-HT drugs. The data reviewed in this paper incorporate the central 5-HT system to the growing list of metabolic signals that converge on melanocortin neurons in the hypothalamus
Enhanced Food Anticipatory Activity Associated with Enhanced Activation of Extrahypothalamic Neural Pathways in Serotonin2C Receptor Null Mutant Mice
Captivating behaviour: mouse models, experimental genetics and reductionist returns in the neurosciences
This a post-print, author-produced version of an article accepted for publication in The Sociological Review. Copyright © 2010 Wiley Blackwell. The definitive version is available at www3.interscience.wiley.comNo Abstract availabl
Precise pattern of recombination in serotonergic and hypothalamic neurons in a Pdx1-cre transgenic mouse line
<p>Abstract</p> <p>Background</p> <p>Multicellular organisms are characterized by a remarkable diversity of morphologically distinct and functionally specialized cell types. Transgenic techniques for the manipulation of gene expression in specific cellular populations are highly useful for elucidating the development and function of these cellular populations. Given notable similarities in developmental gene expression between pancreatic β-cells and serotonergic neurons, we examined the pattern of Cre-mediated recombination in the nervous system of a widely used mouse line, Pdx1-cre (formal designation, Tg(Ipf1-cre)89.1Dam), in which the expression of Cre recombinase is driven by regulatory elements upstream of the <it>pdx1 </it>(pancreatic-duodenal homeobox 1) gene.</p> <p>Methods</p> <p>Single (hemizygous) transgenic mice of the <it>pdx1-cre</it><sup>Cre/0 </sup>genotype were bred to single (hemizygous) transgenic reporter mice (Z/EG and rosa26R lines). Recombination pattern was examined in offspring using whole-mount and sectioned histological preparations at e9.5, e10.5, e11.5, e16.5 and adult developmental stages.</p> <p>Results</p> <p>In addition to the previously reported pancreatic recombination, recombination in the developing nervous system and inner ear formation was observed. In the central nervous system, we observed a highly specific pattern of recombination in neuronal progenitors in the ventral brainstem and diencephalon. In the rostral brainstem (r1-r2), recombination occurred in newborn serotonergic neurons. In the caudal brainstem, recombination occurred in non-serotonergic cells. In the adult, this resulted in reporter expression in the vast majority of forebrain-projecting serotonergic neurons (located in the dorsal and median raphe nuclei) but in none of the spinal cord-projecting serotonergic neurons of the caudal raphe nuclei. In the adult caudal brainstem, reporter expression was widespread in the inferior olive nucleus. In the adult hypothalamus, recombination was observed in the arcuate nucleus and dorsomedial hypothalamus. Recombination was not observed in any other region of the central nervous system. Neuronal expression of endogenous <it>pdx1 </it>was not observed.</p> <p>Conclusions</p> <p>The Pdx1-cre mouse line, and the regulatory elements contained in the corresponding transgene, could be a valuable tool for targeted genetic manipulation of developing forebrain-projecting serotonergic neurons and several other unique neuronal sub-populations. These results suggest that investigators employing this mouse line for studies of pancreatic function should consider the possible contributions of central nervous system effects towards resulting phenotypes.</p
- …
