15 research outputs found

    The Role of Ceramide Synthases in the Pathogenicity of Cryptococcus neoformans.

    Get PDF
    Cryptococcus neoformans (C. neoformans) is estimated to cause about 220,000 new cases every year in patients with AIDS, despite advances in antifungal treatments. C. neoformans possesses a remarkable ability to disseminate through an immunocompromised host, making treatment difficult. Here, we examine the mechanism of survival of C. neoformans under varying host conditions and find a role for ceramide synthase in C. neoformans virulence. This study also provides a detailed lipidomics resource for the fungal lipid research community in addition to discovering a potential target for antifungal therapy. Cell Rep 2018 Feb 6; 22(6):1392-140

    An inclusive Research and Education Community (iREC) model to facilitate undergraduate science education reform

    Get PDF
    Funding: This work was supported by Howard Hughes Medical Institute grants to DIH is GT12052 and MJG is GT15338.Over the last two decades, there have been numerous initiatives to improve undergraduate student outcomes in STEM. One model for scalable reform is the inclusive Research Education Community (iREC). In an iREC, STEM faculty from colleges and universities across the nation are supported to adopt and sustainably implement course-based research – a form of science pedagogy that enhances student learning and persistence in science. In this study, we used pathway modeling to develop a qualitative description that explicates the HHMI Science Education Alliance (SEA) iREC as a model for facilitating the successful adoption and continued advancement of new curricular content and pedagogy. In particular, outcomes that faculty realize through their participation in the SEA iREC were identified, organized by time, and functionally linked. The resulting pathway model was then revised and refined based on several rounds of feedback from over 100 faculty members in the SEA iREC who participated in the study. Our results show that in an iREC, STEM faculty organized as a long-standing community of practice leverage one another, outside expertise, and data to adopt, implement, and iteratively advance their pedagogy. The opportunity to collaborate in this manner and, additionally, to be recognized for pedagogical contributions sustainably engages STEM faculty in the advancement of their pedagogy. Here, we present a detailed pathway model of SEA that, together with underpinning features of an iREC identified in this study, offers a framework to facilitate transformations in undergraduate science education.Peer reviewe

    Cryptococcus neoformans constitutes an ideal model organism to unravel the contribution of cellular aging to the virulence of chronic infections

    Full text link
    Aging affects all organisms, from unicellular yeasts to multicellular humans. Studies in model organisms demonstrate that the pathways that mediate the two forms of aging, replicative and chronological, are highly conserved. Most studies are focused on the effect of aging on an individual cell rather than a whole population. Complex longevity regulation, however, makes aging a highly adaptive trait that is subject to natural selection. Recent studies have shed light on the potential relevance of aging in fungal pathogens, which undergo replicative aging when they expand in the host environment. Hence, pathogens causing chronic infections can constitute ideal model organisms in unraveling the contribution of selection to aging within a population and help elucidate the contribution of aging itself to the virulence of infections

    Differences in Sirtuin Regulation in Response to Calorie Restriction in Cryptococcus neoformans

    No full text
    Cryptococcus neoformans successfully replicates in low glucose in infected patients. In the serotype A strain, H99, growth in this condition prolongs lifespan regulated by SIR2, and can be modulated with SIR2-specific drugs. Previous studies show that lifespan modulation of a cryptococcal population affects its sensitivity to antifungals, and survival in an infection model. Sirtuins and their role in longevity are conserved among fungi; however, the effect of glucose starvation is not confirmed even in Saccharomyces cerevisiae. Lifespan analysis of C. neoformans strains in low glucose showed that 37.5% exhibited pro-longevity, and lifespan of a serotype D strain, RC2, was shortened. Transcriptome comparison of H99 and RC2 under calorie restriction demonstrated differences, confirmed by real-time PCR showing that SIR2, TOR1, SCH9, and PKA1 expression correlated with lifespan response to calorie restriction. As expected, RC2-sir2Δ cells exhibited a shortened lifespan, which was reconstituted. However, shortened lifespan from calorie restriction was independent of SIR2. In contrast to H99 but consistent with altered SIR2 regulation, SIR2-specific drugs did not affect outcome of RC2 infection. These data suggest that SIR2 regulation and response to calorie restriction varies in C. neoformans, which should be considered when Sirtuins are investigated as potential therapy targets for fungal infections

    Difficult but Not Impossible: in Search of an Anti-Candida Vaccine

    No full text
    Abstract Purpose of Review Pervasive fungal infection among the immunocompromised population, in conjunction with a lack of effective treatment options, has demanded further scrutiny. Millions of people are still dying annually from fungal infections. While existing treatment for these fungal infections exists, it is difficult to administer without adverse effects in the immunocompromised and is slowly becoming obsolete due to varying mutation rates and rising resistance in multiple species. Thus, vaccines may be a viable target for preventing and treating fungal infections and addressing the critical challenge of such infections. Recent Findings Candida albicans, along with other non-albicans Candida species, is among the more virulent class of fungal specimens considered for vaccine development. C. albicans is responsible for a large percentage of invasive fungal infections among immunocompromised and immunocompetent populations and carries a relatively high mortality rate. In the last decade, a recent increase in infective capacity among Candida species has shed light on the lack of adequate fungal vaccine choices. While roadblocks still exist in the development of antifungal vaccines, several novel targets have been examined and proposed as candidates. Summary Success in vaccine development has universal appeal; an anti-Candida vaccine formulation could be modified to work against other fungal infections and thus bolster the antifungal pipeline. </jats:sec

    Replicative Aging in Pathogenic Fungi

    No full text
    Candida albicans, Candida auris, Candida glabrata, and Cryptococcus neoformans are pathogenic yeasts which can cause systemic infections in immune-compromised as well as immune-competent individuals. These yeasts undergo replicative aging analogous to a process first described in the nonpathogenic yeast Saccharomyces cerevisiae. The hallmark of replicative aging is the asymmetric cell division of mother yeast cells that leads to the production of a phenotypically distinct daughter cell. Several techniques to study aging that have been pioneered in S. cerevisiae have been adapted to study aging in other pathogenic yeasts. The studies indicate that aging is relevant for virulence in pathogenic fungi. As the mother yeast cell progressively ages, every ensuing asymmetric cell division leads to striking phenotypic changes, which results in increased antifungal and antiphagocytic resistance. This review summarizes the various techniques that are used to study replicative aging in pathogenic fungi along with their limitations. Additionally, the review summarizes some key phenotypic variations that have been identified and are associated with changes in virulence or resistance and thus promote persistence of older cells.</jats:p

    <i>ALL2</i> , a Homologue of <i>ALL1</i> , Has a Distinct Role in Regulating pH Homeostasis in the Pathogen Cryptococcus neoformans

    Full text link
    ABSTRACT Cryptococcus neoformans is a facultative intracellular fungal pathogen that has a polysaccharide capsule and causes life-threatening meningoencephalitis. Its capsule, as well as its ability to survive in the acidic environment of the phagolysosome, contributes to the pathogen's resilience in the host environment. Previously, we reported that downregulation of allergen 1 ( ALL1 ) results in the secretion of a shorter, more viscous exopolysaccharide with less branching and structural complexity, as well as altered iron homeostasis. Now, we report on a homologous coregulated gene, allergen 2 ( ALL2 ). ALL2 's function was characterized by generating null mutants in C. neoformans . In contrast to ALL1 , loss of ALL2 attenuated virulence in the pulmonary infection model. The all2 Δ mutant shed a less viscous exopolysaccharide and exhibited higher sensitivity to hydrogen peroxide than the wild type, and as a result, the all2 Δ mutant was more resistant to macrophage-mediated killing. Transcriptome analysis further supported the distinct function of these two genes. Unlike ALL1 's involvement in iron homeostasis, we now present data on ALL2 's unique function in maintaining intracellular pH in low-pH conditions. Thus, our data highlight that C. neoformans , a human-pathogenic basidiomycete, has evolved a unique set of virulence-associated genes that contributes to its resilience in the human niche. </jats:p
    corecore