25,981 research outputs found
Robust PCA by Manifold Optimization
Robust PCA is a widely used statistical procedure to recover a underlying
low-rank matrix with grossly corrupted observations. This work considers the
problem of robust PCA as a nonconvex optimization problem on the manifold of
low-rank matrices, and proposes two algorithms (for two versions of
retractions) based on manifold optimization. It is shown that, with a proper
designed initialization, the proposed algorithms are guaranteed to converge to
the underlying low-rank matrix linearly. Compared with a previous work based on
the Burer-Monterio decomposition of low-rank matrices, the proposed algorithms
reduce the dependence on the conditional number of the underlying low-rank
matrix theoretically. Simulations and real data examples confirm the
competitive performance of our method
An improved closed-form solution to interfacial stresses in plated beams using a two-stage approach
The shear stress and the normal stresses in the thickness direction at interfaces (referred as interfacial shear and transverse normal stresses hereafter) have played a significant role in understanding the premature debonding failure of beams strengthened by bonding steel/composite plates at their tension surfaces. Due to the occurrence of dissimilar materials and the abrupt change of the cross section, the stress distribution at plate ends becomes singular and hence is considerably complicated. Extensive experimental and analytical analyses have been undertaken to investigate this problem. Large discrepancies
have been found from various studies, particularly from experimental results due to the well-acknowledged difficulty in measuring interfacial stresses. Numerical analyses, e.g. 2-D or 3-D finite element analysis (FEA), may predict accurate results, but they demand laborious work on meshing and sensitivity analysis. Analytical solutions, in particular those in a closed form, are more desirable by engineering practitioners, as they can be
readily incorporated into design equations. This paper reports an improved closed-form solution to interfacial stresses in plated beams using a two-stage approach. In this
solution, beams and bonded plates can be further divided into a number of sub-layers to facilitate the inclusion of steel bars or multiple laminae. Thermal effects may also be
considered by using equivalent mechanical loads, i.e. equivalent axial loads and end moments. Numerical examples are presented to show interfacial stresses in concrete or cast iron beams bonded with steel or FRP plates under mechanical and/or thermal loads. The effect of including the steel reinforcement with various ratios in the RC beam on the interfacial stresses is also investigated. Compared with previously published analytical results, this one improves the accuracy of predicting the transverse normal stresses in both adhesive-beam and plate-adhesive interfaces and the solution is in a closed form
Constrained structure of ancient Chinese poetry facilitates speech content grouping
Ancient Chinese poetry is constituted by structured language that deviates from ordinary language usage [1, 2]; its poetic genres impose unique combinatory constraints on linguistic elements [3]. How does the constrained poetic structure facilitate speech segmentation when common linguistic [4, 5, 6, 7, 8] and statistical cues [5, 9] are unreliable to listeners in poems? We generated artificial Jueju, which arguably has the most constrained structure in ancient Chinese poetry, and presented each poem twice as an isochronous sequence of syllables to native Mandarin speakers while conducting magnetoencephalography (MEG) recording. We found that listeners deployed their prior knowledge of Jueju to build the line structure and to establish the conceptual flow of Jueju. Unprecedentedly, we found a phase precession phenomenon indicating predictive processes of speech segmentation—the neural phase advanced faster after listeners acquired knowledge of incoming speech. The statistical co-occurrence of monosyllabic words in Jueju negatively correlated with speech segmentation, which provides an alternative perspective on how statistical cues facilitate speech segmentation. Our findings suggest that constrained poetic structures serve as a temporal map for listeners to group speech contents and to predict incoming speech signals. Listeners can parse speech streams by using not only grammatical and statistical cues but also their prior knowledge of the form of language
- …
