21 research outputs found
Influence of a multideficient diet from northeastern Brazil on resting blood pressure and baroreflex sensitivity in conscious, freely moving rats
Action of selective serotonin reuptake inhibitor on aggressive behavior in adult rat submitted to the neonatal malnutrition
Post-Weaning Protein Malnutrition Increases Blood Pressure and Induces Endothelial Dysfunctions in Rats
Malnutrition during critical periods in early life may increase the subsequent risk of hypertension and metabolic diseases in adulthood, but the underlying mechanisms are still unclear. We aimed to evaluate the effects of post-weaning protein malnutrition on blood pressure and vascular reactivity in aortic rings (conductance artery) and isolated-perfused tail arteries (resistance artery) from control (fed with Labina®) and post-weaning protein malnutrition rats (offspring that received a diet with low protein content for three months). Systolic and diastolic blood pressure and heart rate increased in the post-weaning protein malnutrition rats. In the aortic rings, reactivity to phenylephrine (10−10–3.10−4 M) was similar in both groups. Endothelium removal or L-NAME (10−4 M) incubation increased the response to phenylephrine, but the L-NAME effect was greater in the aortic rings from the post-weaning protein malnutrition rats. The protein expression of the endothelial nitric oxide isoform increased in the aortic rings from the post-weaning protein malnutrition rats. Incubation with apocynin (0.3 mM) reduced the response to phenylephrine in both groups, but this effect was higher in the post-weaning protein malnutrition rats, suggesting an increase of superoxide anion release. In the tail artery of the post-weaning protein malnutrition rats, the vascular reactivity to phenylephrine (0.001–300 µg) and the relaxation to acetylcholine (10−10–10−3 M) were increased. Post-weaning protein malnutrition increases blood pressure and induces vascular dysfunction. Although the vascular reactivity in the aortic rings did not change, an increase in superoxide anion and nitric oxide was observed in the post-weaning protein malnutrition rats. However, in the resistance arteries, the increased vascular reactivity may be a potential mechanism underlying the increased blood pressure observed in this model
Host nutritional status as a contributory factor to the remodeling of schistosomal hepatic fibrosis
Efeito da desnutrição neonatal sobre o recrutamento celular e a atividade oxidante-antioxidante de macrófagos em ratos adultos endotoxêmicos
Manson's schistosomiasis in the undernourished mouse: some recent findings
This paper deals with current knowledge of the interrelationships between Schistosoma infection and malnutrition. It emphasizes the relevance of these investigations in the face of dynamic and evolving changes occurring in population diets and changes in the epidemiological patterns of schistosomiasis in endemic countries. The paper further discusses the basis for continuing the studies on this subject and the reasons why it represents a misunderstood association. This review also focuses on the cellular and humoral immune responses in the undernourished mouse model infected with Schistosoma mansoni, with updated information on the immune response in wild-type and iNOS knockout mice concerning soluble egg antigen specific antibodies and kinetics of IFN-γ, IL-4, IL-10 and IL-13 cytokines, in the chronic phase of Manson's schistosomiasis. There is indication that schistosome-infected undernourished mice are able to develop a humoral immune response, but antibody titres are much lower than in the control animals. Cytokine production (IFN-γ, IL-4, IL-10) is lower in the undernourished mice, but as infection progresses to the chronic phase its kinetics run an antagonistic course when compared to that of well-nourished animals. Marked variation in the secretion of IL-13 (a fibrogenic cytokine) could explain why undernourished mice do not develop liver "pipe-stem" fibrosis described in previous papers on well-nourished animals
Effects of the Electromagnetic field, 60 Hz, 3 µT, on the hormonal and metabolic regulation of undernourished pregnant rats
Epidemiological studies have implicated maternal protein-calorie deficiency as an important public health problem in developing countries. Over the last decades, a remarkable diffusion of electricity and an increased level of the electromagnetic field (EMF) in the environment have characterized modern societies. Therefore, researchers are concerned with the biological effects of 50-60 Hz, EMF. The aim of this paper is to show the effects of EMF of 60 Hz, 3 μT, exposure for two hours per day in the regulation of the hormonal and metabolic concentrations in pregnant rats, which were fed by Regional Basic Diet (RBD) during their pregnancy as compared with pregnant rats fed a standard diet. Pregnant rats exposed to EMF of 60 Hz, 3 μT, over the pregnancy and fed with RBD presented an increase in glucose release when compared with the Group subjected only to the RBD ration. Rats fed RBD presented a decrease in their insulin and cortisol serum levels when compared with the Group fed with casein. The T3 and T4 concentrations presented the greatest variation among the Groups. The relation T4:T3 was much exaggerated in the Group subjected to RDB and exposed to EMF when compared to the others. In conclusion, the group subjected to the association of EMF and undernutrition suffered a decrease in its serum concentration of T4 and T3 when compared to the well-nourished group and the relationship T4:T3 in the former group was almost eighteen-fold the later one
Spreading depression is facilitated in adult rats previously submitted to short episodes of malnutrition during the lactation period
Lactating rat dams were submitted to short episodes (1, 2 or 3 weeks) of nutritional restriction by receiving the "regional basic diet" (RBD, with 8% protein) of low-income human populations of Northeast Brazil. Their pups were then studied regarding the developmental effects on body and brain weights. When the rats reached adulthood, cortical susceptibility to the phenomenon of spreading depression (SD) was evaluated by performing electrophysiological recordings on the surface of the cerebral cortex. SD was elicited at 20-min intervals by applying 2% KCl for 1 min to a site on the frontal cortex and its occurrence was monitored at 2 sites in the parietal region by recording the electrocorticogram and the slow potential change of SD. When compared to control rats fed a commercial diet with 23% protein, early malnourished rats showed deficits in body and brain weights (10% to 60% and 3% to 15%, respectively), as well as increases in velocity of SD propagation (10% to 20%). These effects were directly related to the duration of maternal dietary restriction, with pups malnourished for 2 or 3 weeks presenting more intense weight and SD changes than those malnourished for 1 week. The effects of 1-week restrictions on SD were less evident in the pups malnourished during the second week of lactation and were more evident in pups receiving the RBD during the third week. The results indicate that short episodes of early malnutrition during the suckling period can affect body and brain development, as well as the cortical susceptibility to SD during adulthood. The data also suggest that the third week of lactation is the period during which the brain is most sensitive to malnutrition, concerning the effects on S
