2 research outputs found
Summer CO2 evasion from streams and rivers in the Kolyma River basin, north-east Siberia
Inland water systems are generally supersaturated in carbon dioxide (CO2) and are increasingly recognized as playing an important role in the global carbon cycle. The Arctic may be particularly important in this respect, given the abundance of inland waters and carbon contained in Arctic soils; however, a lack of trace gas measurements from small streams in the Arctic currently limits this understanding.We investigated the spatial variability of CO2 evasion during the summer low-flow period from streams and rivers in the northern portion of the Kolyma River basin in north-eastern Siberia. To this end, partial pressure of carbon dioxide (pCO2) and gas exchange velocities (k) were measured at a diverse set of streams and rivers to calculate CO2 evasion fluxes.
We combined these CO2 evasion estimates with satellite remote sensing and geographic information system techniques to calculate total areal CO2 emissions. Our results show that small streams are substantial sources of atmospheric CO2 owing to high pCO2 and k, despite being a small portion of total inland water surface area. In contrast, large rivers were generally near equilibrium with atmospheric CO2. Extrapolating our findings across the Panteleikha-Ambolikha sub-watersheds demonstrated that small streams play a major role in CO2 evasion, accounting for 86% of the total summer CO2 emissions from inland waters within these two sub-watersheds. Further expansion of these regional CO2 emission estimates across time and space will be critical to accurately quantify and understand the role of Arctic streams and rivers in the global carbon budget
Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters
Inland waters have been recognized as a~significant source of carbon dioxide (CO2) to the atmosphere at the global scale. Fluxes of CO2 between aquatic systems and the atmosphere are calculated from the gas transfer velocity and the water-air gradient of the partial pressure of CO2 (pCO2). Nowadays, direct measurements of water pCO2 remain scarce in freshwaters and most published pCO2 data are calculated from temperature, pH and total alkalinity (TA). Here, we compare calculated (pH and TA) and measured (Equilibrator and headspace) water pCO2 in a large array of temperate and tropical freshwaters. The 761 data points cover a wide range of values for TA (0 to 14.2 mmol L-1), pH (3.94 to 9.17), measured pCO2 (36 to 23 000 ppmv), and dissolved organic carbon (DOC) (29 to 3970 μmol L-1). Calculated pCO2 were > 10% higher than measured pCO2 in 60% of the samples (with a median overestimation of calculated pCO2 compared to measured pCO2 of 2560 ppmv) and were > 100% higher in the 25% most organic-rich and acidic samples (with a median overestimation of 9080 ppmv). We suggest these large overestimations of calculated pCO2 with respect to measured pCO2 are due to the combination of two cumulative effects: (1) a more significant contribution of organic acids anions to TA in waters with low carbonate alkalinity and high DOC concentrations; (2) a lower buffering capacity of the carbonate system at low pH, that increases the sensitivity of calculated pCO2 to TA in acidic and organic-rich waters. We recommend that regional studies on pCO2 should not be based on pH and TA data only, and that direct measurements of pCO2 should become the primary method in inland waters in general, and in particular in acidic, poorly buffered, freshwaters.AFRIVA
