1,131 research outputs found
Complex polarity: building multicellular tissues through apical membrane traffic
The formation of distinct subdomains of the cell surface is crucial for multicellular organism development. The most striking example of this is apical-basal polarization. What is much less appreciated is that underpinning an asymmetric cell surface is an equally dramatic intracellular endosome rearrangement. Here, we review the interplay between classical cell polarity proteins and membrane trafficking pathways, and discuss how this marriage gives rise to cell polarization. We focus on those mechanisms that regulate apical polarization, as this is providing a number of insights into how membrane traffic and polarity are regulated at the tissue level
DE-Cadherin Is Required for Intercellular Motility during Drosophila Oogenesis
Cadherins are involved in a variety of morphogenetic movements during animal development. However, it has been difficult to pinpoint the precise function of cadherins in morphogenetic processes due to the multifunctional nature of cadherin requirement. The data presented here indicate that homophilic adhesion promoted by Drosophila E-cadherin (DE-cadherin) mediates two cell migration events during Drosophila oogenesis. In Drosophila follicles, two groups of follicle cells, the border cells and the centripetal cells migrate on the surface of germline cells. We show that the border cells migrate as an epithelial patch in which two centrally located cells retain epithelial polarity and peripheral cells are partially depolarized. Both follicle cells and germline cells express DE-cadherin, and border cells and centripetal cells strongly upregulate the expression of DE-cadherin shortly before and during their migration. Removing DE-cadherin from either the follicle cells or the germline cells blocks migration of border cells and centripetal cells on the surface of germline cells. The function of DE-cadherin in border cells appears to be specific for migration as the formation of the border cell cluster and the adhesion between border cells are not disrupted in the absence of DE-cadherin. The speed of migration depends on the level of DE-cadherin expression, as border cells migrate more slowly when DE-cadherin activity is reduced. Finally, we show that the upregulation of DE-cadherin expression in border cells depends on the activity of the Drosophila C/EBP transcription factor that is essential for border cell migration
Cdc42 and Par proteins stabilize dynamic adherens junctions in the Drosophila neuroectoderm through regulation of apical endocytosis
Cell rearrangements require dynamic changes in cell–cell contacts to maintain tissue integrity. We investigated the function of Cdc42 in maintaining adherens junctions (AJs) and apical polarity in the Drosophila melanogaster neuroectodermal epithelium. About one third of cells exit the epithelium through ingression and become neuroblasts. Cdc42-compromised embryos lost AJs in the neuroectoderm during neuroblast ingression. In contrast, when neuroblast formation was suppressed, AJs were maintained despite the loss of Cdc42 function. Loss of Cdc42 function caused an increase in the endocytotic uptake of apical proteins, including apical polarity factors such as Crumbs, which are required for AJ stability. In addition, Cdc42 has a second function in regulating endocytotic trafficking, as it is required for the progression of apical cargo from the early to the late endosome. The Par complex acts as an effector for Cdc42 in controlling the endocytosis of apical proteins. This study reveals functional interactions between apical polarity proteins and endocytosis that are critical for stabilizing dynamic basolateral AJs
The <em>Drosophila</em> MAST kinase Drop out is required to initiate membrane compartmentalisation during cellularisation and regulates dynein-based transport
Cellularisation of the Drosophila syncytial blastoderm embryo into the polarised blastoderm epithelium provides an excellent model with which to determine how cortical plasma membrane asymmetry is generated during development. Many components of the molecular machinery driving cellularisation have been identified, but cell signalling events acting at the onset of membrane asymmetry are poorly understood. Here we show that mutations in drop out (dop) disturb the segregation of membrane cortical compartments and the clustering of E-cadherin into basal adherens junctions in early cellularisation. dop is required for normal furrow formation and controls the tight localisation of furrow canal proteins and the formation of F-actin foci at the incipient furrows. We show that dop encodes the single Drosophila homologue of microtubule-associated Ser/Thr (MAST) kinases. dop interacts genetically with components of the dynein/dynactin complex and promotes dynein-dependent transport in the embryo. Loss of dop function reduces phosphorylation of Dynein intermediate chain, suggesting that dop is involved in regulating cytoplasmic dynein activity through direct or indirect mechanisms. These data suggest that Dop impinges upon the initiation of furrow formation through developmental regulation of cytoplasmic dynein
Gliotactin, a novel marker of tricellular junctions, is necessary for septate junction development in Drosophila
Septate junctions (SJs), similar to tight junctions, function as transepithelial permeability barriers. Gliotactin (Gli) is a cholinesterase-like molecule that is necessary for blood–nerve barrier integrity, and may, therefore, contribute to SJ development or function. To address this hypothesis, we analyzed Gli expression and the Gli mutant phenotype in Drosophila epithelia. In Gli mutants, localization of SJ markers neurexin-IV, discs large, and coracle are disrupted. Furthermore, SJ barrier function is lost as determined by dye permeability assays. These data suggest that Gli is necessary for SJ formation. Surprisingly, Gli distribution only colocalizes with other SJ markers at tricellular junctions, suggesting that Gli has a unique function in SJ development. Ultrastructural analysis of Gli mutants supports this notion. In contrast to other SJ mutants in which septa are missing, septa are present in Gli mutants, but the junction has an immature morphology. We propose a model, whereby Gli acts at tricellular junctions to bind, anchor, or compact SJ strands apically during SJ development
Crumbs regulates rhodopsin transport by interacting with and stabilizing myosin V
In the absence of Crumbs, myosin V is degraded, resulting in defective rhodopsin 1 transport to the rhabdomere and subsequent photoreceptor degeneration
Adhesive/Repulsive Codes in Vertebrate Forebrain Morphogenesis.
The last fifteen years have seen the identification of some of the mechanisms involved in anterior neural plate specification, patterning, and morphogenesis, which constitute the first stages in the formation of the forebrain. These studies have provided us with a glimpse into the molecular mechanisms that drive the development of an embryonic structure, and have resulted in the realization that cell segregation in the anterior neural plate is essential for the accurate progression of forebrain morphogenesis. This review summarizes the latest advances in our understanding of mechanisms of cell segregation during forebrain development, with and emphasis on the impact of this process on the morphogenesis of one of the anterior neural plate derivatives, the eyes
Recycling of E-Cadherin: a potential mechanism for regulating cadherin dynamics
E-Cadherin plays critical roles in many aspects of cell adhesion, epithelial development, and the establishment and maintenance of epithelial polarity. The fate of E-cadherin once it is delivered to the basolateral cell surface, and the mechanisms which govern its participation in adherens junctions, are not well understood. Using surface biotinylation and recycling assays, we observed that some of the cell surface E-cadherin is actively internalized and is then recycled back to the plasma membrane. The pool of E-cadherin undergoing endocytosis and recycling was markedly increased in cells without stable cell-cell contacts, i.e., in preconfluent cells and after cell contacts were disrupted by depletion of extracellular Ca2+, suggesting that endocytic trafficking of E-cadherin is regulated by cell-cell contact. The reformation of cell junctions after replacement of Ca2+ was then found to be inhibited when recycling of endocytosed E-cadherin was disrupted by bafilomycin treatment. The endocytosis and recycling of E-cadherin and of the transferrin receptor were similarly inhibited by potassium depletion and by bafilomycin treatment, and both proteins were accumulated in intracellular compartments by an 18 degrees C temperature block, suggesting that endocytosis may occur via a clathrin-mediated pathway. We conclude that a pool of surface E-cadherin is constantly trafficked through an endocytic, recycling pathway and that this may provide a mechanism for regulating the availability of E-cadherin for junction formation in development, tissue remodeling, and tumorigenesis
Drosophila as a model system to unravel the layers of innate immunity to infection
Innate immunity relies entirely upon germ-line encoded receptors, signalling components and effector molecules for the recognition and elimination of invading pathogens. The fruit fly Drosophila melanogaster with its powerful collection of genetic and genomic tools has been the model of choice to develop ideas about innate immunity and host–pathogen interactions. Here, we review current research in the field, encompassing all layers of defence from the role of the microbiota to systemic immune activation, and attempt to speculate on future directions and open questions
A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion
Aberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva’s vertebrate ortholog, MFSD1, rescues the minerva mutant’s migration and T-antigen glycosylation defects. We thus identify a key conserved regulator that orchestrates O-glycosylation on a protein subset to activate a program governing migration steps important for both development and cancer metastasis
- …
