858 research outputs found
Microscopic Theory of Skyrmions in Quantum Hall Ferromagnets
We present a microscopic theory of skyrmions in the monolayer quantum Hall
ferromagnet. It is a peculiar feature of the system that the number density and
the spin density are entangled intrinsically as dictated by the W
algebra. The skyrmion and antiskyrmion states are constructed as W-rotated states of the hole-excited and electron-excited states,
respectively. They are spin textures accompanied with density modulation that
decreases the Coulomb energy. We calculate their excitation energy as a
function of the Zeeman gap and compared the result with experimental data.Comment: 15 pages (to be published in PRB
Charged-Particle and Neutron-Capture Processes in the High-Entropy Wind of Core-Collapse Supernovae
The astrophysical site of the r-process is still uncertain, and a full
exploration of the systematics of this process in terms of its dependence on
nuclear properties from stability to the neutron drip-line within realistic
stellar environments has still to be undertaken. Sufficiently high neutron to
seed ratios can only be obtained either in very neutron-rich low-entropy
environments or moderately neutron-rich high-entropy environments, related to
neutron star mergers (or jets of neutron star matter) and the high-entropy wind
of core-collapse supernova explosions. As chemical evolution models seem to
disfavor neutron star mergers, we focus here on high-entropy environments
characterized by entropy , electron abundance and expansion velocity
. We investigate the termination point of charged-particle reactions,
and we define a maximum entropy for a given and ,
beyond which the seed production of heavy elements fails due to the very small
matter density. We then investigate whether an r-process subsequent to the
charged-particle freeze-out can in principle be understood on the basis of the
classical approach, which assumes a chemical equilibrium between neutron
captures and photodisintegrations, possibly followed by a -flow
equilibrium. In particular, we illustrate how long such a chemical equilibrium
approximation holds, how the freeze-out from such conditions affects the
abundance pattern, and which role the late capture of neutrons originating from
-delayed neutron emission can play.Comment: 52 pages, 31 figure
Spin gap in the 2D electron system of GaAs/AlGaAs single heterojunctions in weak magnetic fields
We study the interaction-enhanced spin gaps in the two-dimensional electron
gas confined in GaAs/AlGaAs single heterojunctions subjected to weak magnetic
fields. The values are obtained from the chemical potential jumps measured by
magnetocapacitance. The gap increase with parallel magnetic field indicates
that the lowest-lying charged excitations are accompanied with a single spin
flip at the odd-integer filling factor nu=1 and nu=3, in disagreement with the
concept of skyrmions.Comment: as publishe
Collective modes of CP(3) Skyrmion crystals in quantum Hall ferromagnets
The two-dimensional electron gas in a bilayer quantum Hall system can sustain
an interlayer coherence at filling factor nu=1 even in the absence of tunneling
between the layers. This system has low-energy charged excitations which may
carry textures in real spin or pseudospin. Away from filling factor nu =1 a
finite density of these is present in the ground state of the 2DEG and forms a
crystal. Depending on the relative size of the various energy scales, such as
tunneling (Delta_SAS), Zeeman coupling (Delta_Z) or electrical bias (Delta_b),
these textured crystal states can involve spin, pseudospin, or both
intertwined. In this article, we present a comprehensive numerical study of the
collective excitations of these textured crystals using the GRPA. For the pure
spin case, at finite Zeeman coupling the state is a Skyrmion crystal with a
gapless phonon mode, and a separate Goldstone mode that arises from a broken
U(1) symmetry. At zero Zeeman coupling, we demonstrate that the constituent
Skyrmions break up, and the resulting state is a meron crystal with 4 gapless
modes. In contrast, a pure pseudospin Skyrme crystal at finite tunneling has
only the phonon mode. For Delta_SAS=0, the state evolves into a meron crystal
and supports an extra gapless U(1) mode in addition to the phonon. For a CP(3)
Skyrmion crystal, we find a U(1) gapless mode in the presence of the
symmetry-breaking fields. In addition, a second mode with a very small gap is
present in the spectrum.Comment: 16 pages and 12 eps figure
Magnetotransport Study of the Canted Antiferromagnetic Phase in Bilayer Quantum Hall State
Magnetotransport properties are investigated in the bilayer quantum Hall
state at the total filling factor . We measured the activation energy
elaborately as a function of the total electron density and the density
difference between the two layers. Our experimental data demonstrate clearly
the emergence of the canted antiferromagnetic (CAF) phase between the
ferromagnetic phase and the spin-singlet phase. The stability of the CAF phase
is discussed by the comparison between experimental results and theoretical
calculations using a Hartree-Fock approximation and an exact diagonalization
study. The data reveal also an intrinsic structure of the CAF phase divided
into two regions according to the dominancy between the intralayer and
interlayer correlations.Comment: 6 pages, 7 figure
Geometrical Effects of Baryon Density Inhomogeneities on Primordial Nucleosynthesis
We discuss effects of fluctuation geometry on primordial nucleosynthesis. For
the first time we consider condensed cylinder and cylindrical-shell fluctuation
geometries in addition to condensed spheres and spherical shells. We find that
a cylindrical shell geometry allows for an appreciably higher baryonic
contribution to be the closure density (\Omega_b h_{50}^2 \la 0.2) than that
allowed in spherical inhomogeneous or standard homogeneous big bang models.
This result, which is contrary to some other recent studies, is due to both
geometry and recently revised estimates of the uncertainties in the
observationally inferred primordial light-element abundances. We also find that
inhomogeneous primordial nucleosynthesis in the cylindrical shell geometry can
lead to significant Be and B production. In particular, a primordial beryllium
abundance as high as [Be] = 12 + log(Be/H) is possible while still
satisfying all of the light-element abundance constraints.Comment: Latex, 20 pages + 11 figures(not included). Entire ps file with
embedded figures available via anonymous ftp at
ftp://genova.mtk.nao.ac.jp/pub/prepri/bbgeomet.ps.g
Analysis of fast turbulent reconnection with self-consistent determination of turbulence timescale
We present results of Reynolds-averaged turbulence model simulation on the
problem of magnetic reconnection. In the model, in addition to the mean
density, momentum, magnetic field, and energy equations, the evolution
equations of the turbulent cross-helicity , turbulent energy and its
dissipation rate are simultaneously solved to calculate the rate
of magnetic reconnection for a Harris-type current sheet. In contrast to
previous works based on algebraic modeling, the turbulence timescale is
self-determined by the nonlinear evolutions of and , their
ratio being a timescale. We compare the reconnection rate produced by our
mean-field model to the resistive non-turbulent MHD rate. To test whether
different regimes of reconnection are produced, we vary the initial strength of
turbulent energy and study the effect on the amount of magnetic flux
reconnected in time.Comment: 10 pages, 7 figure
SU(4) Skyrmions and Activation Energy Anomaly in Bilayer Quantum Hall Systems
The bilayer QH system has four energy levels in the lowest Landau level,
corresponding to the layer and spin degrees of freedom. We investigate the
system in the regime where all four levels are nearly degenerate and equally
active. The underlying group structure is SU(4). At the QH state is a
charge-transferable state between the two layers and the SU(4) isospin
coherence develops spontaneously. Quasiparticles are isospin textures to be
identified with SU(4) skyrmions. The skyrmion energy consists of the Coulomb
energy, the Zeeman energy and the pseudo-Zeeman energy. The Coulomb energy
consists of the self-energy, the capacitance energy and the exchange energy. At
the balanced point only pseudospins are excited unless the tunneling gap is too
large. Then, the SU(4) skyrmion evolves continuously from the
pseudospin-skyrmion limit into the spin-skyrmion limit as the system is
transformed from the balanced point to the monolayer point by controlling the
bias voltage. Our theoretical result explains quite well the experimental data
due to Murphy et al. and Sawada et al. on the activation energy anomaly induced
by applying parallel magnetic field.Comment: 22 pagets, 6 figures, the final version to be published in PR
- …
