964 research outputs found

    Spin gap in the 2D electron system of GaAs/AlGaAs single heterojunctions in weak magnetic fields

    Full text link
    We study the interaction-enhanced spin gaps in the two-dimensional electron gas confined in GaAs/AlGaAs single heterojunctions subjected to weak magnetic fields. The values are obtained from the chemical potential jumps measured by magnetocapacitance. The gap increase with parallel magnetic field indicates that the lowest-lying charged excitations are accompanied with a single spin flip at the odd-integer filling factor nu=1 and nu=3, in disagreement with the concept of skyrmions.Comment: as publishe

    Geometrical Effects of Baryon Density Inhomogeneities on Primordial Nucleosynthesis

    Get PDF
    We discuss effects of fluctuation geometry on primordial nucleosynthesis. For the first time we consider condensed cylinder and cylindrical-shell fluctuation geometries in addition to condensed spheres and spherical shells. We find that a cylindrical shell geometry allows for an appreciably higher baryonic contribution to be the closure density (\Omega_b h_{50}^2 \la 0.2) than that allowed in spherical inhomogeneous or standard homogeneous big bang models. This result, which is contrary to some other recent studies, is due to both geometry and recently revised estimates of the uncertainties in the observationally inferred primordial light-element abundances. We also find that inhomogeneous primordial nucleosynthesis in the cylindrical shell geometry can lead to significant Be and B production. In particular, a primordial beryllium abundance as high as [Be] = 12 + log(Be/H) 3\approx -3 is possible while still satisfying all of the light-element abundance constraints.Comment: Latex, 20 pages + 11 figures(not included). Entire ps file with embedded figures available via anonymous ftp at ftp://genova.mtk.nao.ac.jp/pub/prepri/bbgeomet.ps.g

    Analysis of fast turbulent reconnection with self-consistent determination of turbulence timescale

    Full text link
    We present results of Reynolds-averaged turbulence model simulation on the problem of magnetic reconnection. In the model, in addition to the mean density, momentum, magnetic field, and energy equations, the evolution equations of the turbulent cross-helicity WW, turbulent energy KK and its dissipation rate ε\varepsilon are simultaneously solved to calculate the rate of magnetic reconnection for a Harris-type current sheet. In contrast to previous works based on algebraic modeling, the turbulence timescale is self-determined by the nonlinear evolutions of KK and ε\varepsilon, their ratio being a timescale. We compare the reconnection rate produced by our mean-field model to the resistive non-turbulent MHD rate. To test whether different regimes of reconnection are produced, we vary the initial strength of turbulent energy and study the effect on the amount of magnetic flux reconnected in time.Comment: 10 pages, 7 figure

    Probing neutrino decays with the cosmic microwave background

    Get PDF
    We investigate in detail the possibility of constraining neutrino decays with data from the cosmic microwave background radiation (CMBR). Two generic decays are considered \nu_H -> \nu_L \phi and \nu_H -> \nu_L \nu_L_bar \nu_L. We have solved the momentum dependent Boltzmann equation in order to account for possible relativistic decays. Doing this we estimate that any neutrino with mass m > 1 eV decaying before the present should be detectable with future CMBR data. Combining this result with other results on stable neutrinos, any neutrino mass of the order 1 eV should be detectable.Comment: 8 pages, 4 figures, to appear in Phys. Rev.

    Inhomogeneous Neutrino Degeneracy and Big Bang Nucleosynthesis

    Get PDF
    We examine Big Bang nucleosynthesis (BBN) in the case of inhomogenous neutrino degeneracy, in the limit where the fluctuations are sufficiently small on large length scales that the present-day element abundances are homogeneous. We consider two representive cases: degeneracy of the electron neutrino alone, and equal chemical potentials for all three neutrinos. We use a linear programming method to constrain an arbitrary distribution of the chemical potentials. For the current set of (highly-restrictive) limits on the primordial element abundances, homogeneous neutrino degeneracy barely changes the allowed range of the baryon-to-photon ratio. Inhomogeneous degeneracy allows for little change in the lower bound on the baryon-to-photon ratio, but the upper bound in this case can be as large as 1.1 \times 10^{-8} (only electron neutrino degeneracy) or 1.0 \times 10^{-9} (equal degeneracies for all three neutrinos). For the case of inhomogeneous neutrino degeneracy, we show that there is no BBN upper bound on the neutrino energy density, which is bounded in this case only by limits from structure formation and the cosmic microwave background.Comment: 6 pages, no figure

    Boron in Very Metal-Poor Stars

    Get PDF
    We have observed the B I 2497 A line to derive the boron abundances of two very metal-poor stars selected to help in tracing the origin and evolution of this element in the early Galaxy: BD +23 3130 and HD 84937. The observations were conducted using the Goddard High Resolution Spectrograph on board the Hubble Space Telescope. A very detailed abundance analysis via spectral synthesis has been carried out for these two stars, as well as for two other metal-poor objects with published spectra, using both Kurucz and OSMARCS model photospheres, and taking into account consistently the NLTE effects on the line formation. We have also re-assessed all published boron abundances of old disk and halo unevolved stars. Our analysis shows that the combination of high effective temperature (Teff > 6000 K, for which boron is mainly ionized) and low metallicity ([Fe/H]<-1) makes it difficult to obtain accurate estimates of boron abundances from the B I 2497 A line. This is the case of HD 84937 and three other published objects (including two stars with [Fe/H] ~ -3), for which only upper limits can be established. BD +23 3130, with [Fe/H] ~ -2.9 and logN(B)_NLTE=0.05+/-0.30, appears then as the most metal-poor star for which a firm measurement of the boron abundance presently exists. The evolution of the boron abundance with metallicity that emerges from the seven remaining stars with Teff < 6000 K and [Fe/H]<-1, for which beryllium abundances were derived using the same stellar parameters, shows a linear increase with a slope ~ 1. Furthermore, the B/Be ratio found is constant at a value ~ 20 for stars in the range -3<[Fe/H]<-1. These results point to spallation reactions of ambient protons and alpha particles with energetic particles enriched in CNO as the origin of boron and beryllium in halo stars.Comment: 38 pages, 11 Encapsulated Postscript figures (included), uses aaspp4.sty. Accepted for publication in The Astrophysical Journal. The preprint is also available at: http://www.iac.es/publicaciones/preprints.htm

    RECONNECTION AND ELECTRON TEMPERATURE ANISOTROPY IN SUB-PROTON SCALE PLASMA TURBULENCE

    Get PDF
    Turbulent behavior at sub-proton scales in magnetized plasmas is important for a full understanding of the energetics of astrophysical flows such as the solar wind. We study the formation of electron temperature anisotropy due to reconnection in the turbulent decay of sub-proton scale fluctuations using two dimensional, particle-in-cell (PIC) plasma simulations with realistic electron-proton mass ratio and a guide field out of the simulation plane. A fluctuation power spectrum with approximately power law form is created down to scales of order the electron gyroradius. In the dynamic magnetic field topology, which gradually relaxes in complexity, we identify the signatures of collisionless reconnection at sites of X-point field geometry. The reconnection sites are generally associated with regions of strong parallel electron temperature anisotropy. The evolving topology of magnetic field lines connected to a reconnection site allows spatial mixing of electrons accelerated at multiple, spatially separated reconnection regions. This leads to the formation of multi-peaked velocity distribution functions with a strong parallel temperature anisotropy. In a three-dimensional system, supporting the appropriate wave vectors, the multi-peaked distribution functions would be expected to be unstable to kinetic instabilities, contributing to dissipation. The proposed mechanism of anisotropy formation is also relevant to space and astrophysical systems where the evolution of the plasma is constrained by linear temperature anisotropy instability thresholds. The presence of reconnection sites leads to electron energy gain, nonlocal velocity space mixing and the formation of strong temperature anisotropy; this is evidence of an important role for reconnection in the dissipation of turbulent fluctuations.Comment: 27 pages, 14 figures. Accepted for publication in ApJ, Jan 3, 201

    Subthreshold rho^0 photoproduction on 3He

    Full text link
    A large reduction of the rho^0 mass in the nuclear medium is reported, inferred from dipion photoproduction spectra in the 1 GeV region, for the reaction 3He(gamma,pi+ pi-)X with a 10% duty factor tagged-photon beam and the TAGX multi-particle spectrometer. The energy range covered (800 < E(gamma) < 1120 MeV) lies mostly below the free rho^0 production threshold, a region which is believed sensitive to modifications of light vector-meson properties at nuclear-matter densities. The rho^0 masses extracted from the MC fitting of the data, m*(rho^0) = 642 +/- 40, 669 +/- 32, and 682 +/- 56 MeV/c^2 for E(gamma) in the 800-880, 880-960, and 960-1040 MeV regions respectively, are independently corroborated by a measured, assumption-free, kinematical observable. This mass shift, far exceeding current mean-field driven theoretical predictions, may be suggestive of rho^0 decay within the range of the nucleonic field.Comment: 40 pages, 13 figures, submitted to Phys. Rev.

    Finite temperature effects on cosmological baryon diffusion and inhomogeneous Big-Bang nucleosynthesis

    Get PDF
    We have studied finite temperature corrections to the baryon transport cross sections and diffusion coefficients. These corrections are based upon the recently computed renormalized electron mass and the modified state density due to the background thermal bath in the early universe. It is found that the optimum nucleosynthesis yields computed using our diffusion coefficients shift to longer distance scales by a factor of about 3. We also find that the minimum value of 4He^4 He abundance decreases by ΔYp0.01\Delta Y_p \simeq 0.01 while DD and 7Li^7 Li increase. Effects of these results on constraints from primordial nucleosynthesis are discussed. In particular, we find that a large baryonic contribution to the closure density (\Omega_b h_{50}^{2} \lsim 0.4) may be allowed in inhomogeneous models corrected for finite temperature.Comment: 7 pages, 6 figures, submitted to Phys. Rev.

    Kinetic-scale magnetic turbulence and finite Larmor radius effects at Mercury

    Full text link
    We use a nonstationary generalization of the higher-order structure function technique to investigate statistical properties of the magnetic field fluctuations recorded by MESSENGER spacecraft during its first flyby (01/14/2008) through the near Mercury's space environment, with the emphasis on key boundary regions participating in the solar wind -- magnetosphere interaction. Our analysis shows, for the first time, that kinetic-scale fluctuations play a significant role in the Mercury's magnetosphere up to the largest resolvable time scale ~20 s imposed by the signal nonstationarity, suggesting that turbulence at this planet is largely controlled by finite Larmor radius effects. In particular, we report the presence of a highly turbulent and extended foreshock system filled with packets of ULF oscillations, broad-band intermittent fluctuations in the magnetosheath, ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail, and kinetic-scale fluctuations in the inner current sheet encountered at the outbound (dawn-side) magnetopause. Overall, our measurements indicate that the Hermean magnetosphere, as well as the surrounding region, are strongly affected by non-MHD effects introduced by finite sizes of cyclotron orbits of the constituting ion species. Physical mechanisms of these effects and their potentially critical impact on the structure and dynamics of Mercury's magnetic field remain to be understood.Comment: 46 pages, 5 figures, 2 table
    corecore