789 research outputs found

    Angular Momentum Evolution of Young Stars: Toward a Synthesis of Observations, Theory, and Modeling

    Full text link
    The aim of this AAS Topical Session was to update the community on the current state of knowledge about the angular momentum evolution of young stars. For newcomers to the subject, the session was intended to provide an introduction and general overview and to highlight emerging issues. For experienced workers in this field, the session provided an opportunity for synthesizing recent developments in observations, theory, and modeling of rotation of young stars and for identifying promising new research directions.Comment: 10 pages, conference summary, to appear in April PAS

    K Giants in Baade's Window. II. The Abundance Distribution

    Get PDF
    This is the second in a series of papers in which we analyze spectra of over 400 K and M giants in Baade's Window, including most of the stars with proper motions measured by Spaenhauer et al. [AJ, 103, 297 (1992)]. In our first paper, we measured line--strength indices of Fe, Mg, CN and Hβ\beta and calibrated them on the system of Faber et al. [ApJS, 57, 711 (1985)]. Here, we use the Fe\langle{\rm Fe}\rangle index to derive an abundance distribution in [Fe/H] for 322 stars with effective temperatures between 3900 K and 5160 K. Our derived values of [Fe/H] agree well with those measured from high--resolution echelle spectra (e.g., McWilliam \& Rich [ApJS, 91, 749 (1994)]) for the small number of stars in common. We find a mean abundance [Fe/H]=0.11±0.04\langle{\rm [Fe/H]}\rangle = -0.11 \pm 0.04 for our sample of Baade's Window K giants. More than half the sample lie in the range 0.4<-0.4 < \feh\ <+0.3<+0.3. We estimate line--of--sight distances for individual stars in our sample and confirm that, in Baade's Window, most K giants with V<15.5V < 15.5 are foreground disk stars, but the great majority (more than 80\%) with V>16V > 16 belong to the bulge. We also compare the metallicities derived from the CN and Mg2_2 indices to those from iron. Most of the metal--rich stars in our sample appear to be CN--weak, in contrast to the situation in metal--rich globular clusters and elliptical galaxies. The metal--poor half of our sample ([Fe/H] <0< 0) shows evidence for a mild Mg overenhancement ([Mg/Fe] +0.2\sim +0.2); but this is not seen in the more metal--rich stars ([Fe/H] \geq 0). The K giants in Baade's Window therefore share some, but not all, of the characteristics of stars in elliptical galaxies as inferred from their integrated light.Comment: Accepted for publication in the Astronomical Journal, tentatively scheduled for July, 1996. LaTex source which generates 40 pages of text (no figures or tables). Complete (text + 15 figs + 5 tables) preprint in gzip/tar format is also available at ftp://bessel.mps.ohio-state.edu/pub/terndrup/kg2.tar.gz (227 kbyte

    Collision Risk Analysis for HSC

    Get PDF

    Ages, Distances, and the Initial Mass Functions of Stellar Clusters

    Get PDF
    We provide a review of the current status of several topics on the ages, distances, and mass functions of open clusters, with a particular emphasis on illuminating the areas of uncertainty. Hipparcos has obtained parallaxes for nearby open clusters that have expected accuracies much better than has been previously achievable. By using the lithium depletion boundary method and isochrone fitting based on much improved new theoretical evolutionary models for low mass stars, it is arguable that we will soon have have much better age scales for clusters and star-forming regions. With improved optical and near-IR cameras, we are just now beginning to extend the mass function of open clusters like the Pleiades into the regime below the hydrogen burning mass limit. Meanwhile, observations in star-forming regions are in principle capable of identifying objects down to of order 10 Jupiter masses.Comment: 13 pages, including 3 embedded figures (4 EPS files). To appear in "11th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun," ed. R. J. Garcia Lopez, R. Rebolo, and M. R. Zapatero Osori

    GRB 060218/SN 2006aj: A Gamma-Ray Burst and Prompt Supernova at z=0.0335

    Get PDF
    We report the imaging and spectroscopic localization of GRB 060218 to a low-metallicity dwarf starburst galaxy at z = 0.03345 +/- 0.00006. In addition to making it the second nearest gamma-ray burst known, optical spectroscopy reveals the earliest detection of weak, supernova-like Si II near 5720 Angstroms (0.1c), starting 1.95 days after the burst trigger. UBVRI photometry obtained between 1 and 26 days post-burst confirms the early rise of supernova light, and suggests a short time delay between the gamma-ray burst and the onset of SN 2006aj if the early appearance of a soft component in the X-ray spectrum is understood as a ``shock breakout''. Together, these results verify the long-hypothesized origin of soft gamma-ray bursts in the deaths of massive stars.Comment: 5 pages, 2 figure

    GRB 021004: A Possible Shell Nebula around a Wolf-Rayet Star Gamma-Ray Burst Progenitor

    Full text link
    The rapid localization of GRB 021004 by the HETE-2 satellite allowed nearly continuous monitoring of its early optical afterglow decay, as well as high-quality optical spectra that determined a redshift of z=2.328 for its host, an active starburst galaxy with strong Lyman-alpha emission and several absorption lines. Spectral observations show multiple absorbers blueshifted by up to 3,155 km/s relative to the host galaxy Lyman-alpha emission.We argue that these correspond to a fragmented shell nebula, gradually enriched by a Wolf-Rayet wind over the lifetime of a massive progenitor bubble. In this scenario, the absorbers can be explained by circumstellar material that have been radiatively accelerated by the GRB emission. Dynamical and photoionization models are used to provide constraints on the radiative acceleration from the early afterglow.Comment: 5 pages, 3 figures, to appear in the proceedings of the 2003 GRB Conferenc
    corecore