59 research outputs found

    From qubits to black holes: entropy, entanglement and all that

    Full text link
    Entropy plays a crucial role in characterization of information and entanglement, but it is not a scalar quantity and for many systems it is different for different relativistic observers. Loop quantum gravity predicts the Bekenstein-Hawking term for black hole entropy and logarithmic correction to it. The latter originates in the entanglement between the pieces of spin networks that describe black hole horizon. Entanglement between gravity and matter may restore the unitarity in the black hole evaporation process. If the collapsing matter is assumed to be initially in a pure state, then entropy of the Hawking radiation is exactly the created entanglement between matter and gravity.Comment: Honorable Mention in the 2005 Gravity Research Foundation Essay Competitio

    Entropy, holography and the second law

    Full text link
    The geometric entropy in quantum field theory is not a Lorentz scalar and has no invariant meaning, while the black hole entropy is invariant. Renormalization of entropy and energy for reduced density matrices may lead to the negative free energy even if no boundary conditions are imposed. Presence of particles outside the horizon of a uniformly accelerated observer prevents the description in terms of a single Unruh temperature.Comment: 4 pages, RevTex 4, 1 eps figur

    Quantum Entropy and Special Relativity

    Get PDF
    We consider a single free spin-1/2 particle. The reduced density matrix for its spin is not covariant under Lorentz transformations. The spin entropy is not a relativistic scalar and has no invariant meaning

    Entanglement distribution by an arbitrarily inept delivery service

    Get PDF
    We consider the scenario where a company C manufactures in bulk pure entangled pairs of particles, each pair intended for a distinct pair of distant customers. Unfortunately, its delivery service is inept - the probability that any given customer pair receives its intended particles is S, and the customers cannot detect whether an error has occurred. Remarkably, no matter how small S is, it is still possible for C to distribute entanglement by starting with non-maximally entangled pairs. We determine the maximum entanglement distributable for a given S, and also determine the ability of the parties to perform nonlocal tasks with the qubits they receive.Comment: 5 pages, 3 figures. v2 includes minor change

    Relativistically invariant quantum information

    Get PDF
    We show that quantum information can be encoded into entangled states of multiple indistinguishable particles in such a way that any inertial observer can prepare, manipulate, or measure the encoded state independent of their Lorentz reference frame. Such relativistically invariant quantum information is free of the difficulties associated with encoding into spin or other degrees of freedom in a relativistic context.Comment: 5 pages, published versio

    Information gap for classical and quantum communication in a Schwarzschild spacetime

    Get PDF
    Communication between a free-falling observer and an observer hovering above the Schwarzschild horizon of a black hole suffers from Unruh-Hawking noise, which degrades communication channels. Ignoring time dilation, which affects all channels equally, we show that for bosonic communication using single and dual rail encoding the classical channel capacity reaches a finite value and the quantum coherent information tends to zero. We conclude that classical correlations still exist at infinite acceleration, whereas the quantum coherence is fully removed.Comment: 5 pages, 4 figure

    Entanglement, discord and the power of quantum computation

    Full text link
    We show that the ability to create entanglement is necessary for execution of bipartite quantum gates even when they are applied to unentangled states and create no entanglement. Starting with a simple example we demonstrate that to execute such a gate bi-locally the local operations and classical communications (LOCC) should be supplemented by shared entanglement. Our results point to the changes in quantum discord, which is a measure of quantumness of correlations even in the absence of entanglement, as the indicator of failure of a LOCC implementation of the gates.Comment: Published version. More results are adde

    Renormalization and black hole entropy in Loop Quantum Gravity

    Full text link
    Microscopic state counting for a black hole in Loop Quantum Gravity yields a result proportional to horizon area, and inversely proportional to Newton's constant and the Immirzi parameter. It is argued here that before this result can be compared to the Bekenstein-Hawking entropy of a macroscopic black hole, the scale dependence of both Newton's constant and the area must be accounted for. The two entropies could then agree for any value of the Immirzi parameter, if a certain renormalization property holds.Comment: 8 pages; v2: references added, typos corrected, version to appear in CQ

    Nonlinear Qubit Transformations

    Full text link
    We generalise our previous results of universal linear manipulations [Phys. Rev. A63, 032304 (2001)] to investigate three types of nonlinear qubit transformations using measurement and quantum based schemes. Firstly, nonlinear rotations are studied. We rotate different parts of a Bloch sphere in opposite directions about the z-axis. The second transformation is a map which sends a qubit to its orthogonal state (which we define as ORTHOG). We consider the case when the ORTHOG is applied to only a partial area of a Bloch sphere. We also study nonlinear general transformation, i.e. (theta,phi)->(theta-alpha,phi), again, applied only to part of the Bloch sphere. In order to achieve these three operations, we consider different measurement preparations and derive the optimal average (instead of universal) quantum unitary transformations. We also introduce a simple method for a qubit measurement and its application to other cases.Comment: minor corrections. To appear in PR
    corecore