141 research outputs found
CD44 Expression Profile Varies According to Maturational Subtypes and Molecular Profiles of Pediatric T-Cell Lymphoblastic Leukemia.
CD44 is a glycoprotein expressed in leucocytes and a marker of leukemia-initiating cells, being shown to be important in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). In this study, we have (i) identified the aberrant antigenic pattern of CD44 and its isoform CD44v6 in T-ALL; (ii) tested the association with different T-cell subtypes and genomic alterations; (iii) identified the impact of CD44 status in T-ALL outcome. Samples from 184 patients (123 T-ALL and 61 AML; <19 years) were analyzed throughout multiparametric flow cytometry. Mutations in N/KRAS, NOTCH1, FBXW7 as well as STIL-TAL1 and TLX3 rearrangements were detected using standard molecular techniques. CD44 expression was characterized in all T-ALL and AML cases. Compared with AML samples in which the median fluorescence intensity (MFI) was 79.1 (1-1272), T-ALL was relatively low, with MFI 43.2 (1.9-1239); CD44v6 expression was rarely found, MFI 1 (0.3-3.7). T-ALL immature subtypes (mCD3/CD1aneg) had a lower CD44 expression, MFI 57.5 (2.7-866.3), whereas mCD3/TCRγδpos cases had higher expressions, MFI 99.9 (16.4-866.3). NOTCH1 mut and STIL-TAL1 were associated with low CD44 expression, whereas N/KRAS mut and FBXW7 mut cases had intermediate expression. In relation to clinical features, CD44 expression was associated with tumor infiltrations (p = 0.065). However, no association was found with initial treatment responses and overall survival prediction. Our results indicate that CD44 is aberrantly expressed in T-ALL being influenced by different genomic alterations. Unraveling this intricate mechanism is required to place CD44 as a therapeutic target in T-ALL
STC1 and PTHrP modify carbohydrate and lipid metabolism in liver of a teleost fish
Stanniocalcin 1 (STC1) and parathyroid hormone-related protein (PTHrP) are calciotropic hormones in vertebrates. Here, a recently hypothesized metabolic role for these hormones is tested on European sea bass treated with: (i) teleost PTHrP(1-34), (ii) PTHrP(1-34) and anti-STC1 serum (pro-PTHrP groups), (iii) a PTHrP antagonist PTHrP(7-34) or (iv) PTHrP(7-34) and STC1 (pro-STC1 groups). Livers were analysed using untargeted metabolic profiling based on proton nuclear magnetic resonance (1H-NMR) spectroscopy. Concentrations of branched-chain amino acid (BCAA), alanine, glutamine and glutamate increased in pro-STC1 groups suggesting their mobilization from the muscle to the liver for degradation and gluconeogenesis from alanine and glutamine. In addition, only STC1 treatment decreased the concentrations of succinate, fumarate and acetate, indicating slowing of the citric acid cycle. In the pro-PTHrP groups the concentrations of glucose, erythritol and lactate decreased, indicative of gluconeogenesis from lactate. Taurine, trimethylamine, trimethylamine N-oxide and carnitine changed in opposite directions in the pro-STC1 versus the pro-PTHrP groups, suggesting opposite effects, with STC1 stimulating lipogenesis and PTHrP activating lipolysis/β-oxidation of fatty acids. These findings suggest a role for STC1 and PTHrP related to strategic energy mechanisms that involve the production of glucose and safeguard of liver glycogen reserves for stressful situations.Portuguese Foundation for Science and Technology (FCT) SFRH/BD/103185/2014info:eu-repo/semantics/publishedVersio
Retinoic acid regulates avian lung branching through a molecular network
Retinoic acid (RA) is of major importance during vertebrate embryonic development and its levels need to be strictly regulated otherwise congenital malformations will develop. Through the action of specific nuclear receptors, named RAR/RXR, RA regulates the expression of genes that eventually influence proliferation and tissue patterning. RA has been described as crucial for different stages of mammalian lung morphogenesis, and as part of a complex molecular network that contributes to precise organogenesis; nonetheless, nothing is known about its role in avian lung development. The current report characterizes, for the first time, the expression pattern of RA signaling members (stra6, raldh2, raldh3, cyp26a1, rar alpha, and rar beta) and potential RA downstream targets (sox2, sox9, meis1, meis2, tgf beta 2, and id2) by in situ hybridization. In the attempt of unveiling the role of RA in chick lung branching, in vitro lung explants were performed. Supplementation studies revealed that RA stimulates lung branching in a dose-dependent manner. Moreover, the expression levels of cyp26a1, sox2, sox9, rar beta, meis2, hoxb5, tgf beta 2, id2, fgf10, fgfr2, and shh were evaluated after RA treatment to disclose a putative molecular network underlying RA effect. In situ hybridization analysis showed that RA is able to alter cyp26a1, sox9, tgf beta 2, and id2 spatial distribution; to increase rar beta, meis2, and hoxb5 expression levels; and has a very modest effect on sox2, fgf10, fgfr2, and shh expression levels. Overall, these findings support a role for RA in the proximal-distal patterning and branching morphogenesis of the avian lung and reveal intricate molecular interactions that ultimately orchestrate branching morphogenesis.The authors would like to thank Ana Lima
for slide sectioning and Rita Lopes for contributing to the initiation
of this project. This work has been funded by FEDER funds,
through the Competitiveness Factors Operational Programme
(COMPETE), and by National funds, through the Foundation for
Science and Technology (FCT), under the scope of the Project
POCI-01-0145-FEDER-007038; and by the Project NORTE-01-0145-
FEDER-000013, supported by the Northern Portugal Regional Operational
Programme (NORTE 2020), under the Portugal 2020 Partnership
Agreement, through the European Regional Development Fund
(FEDER). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio
The authenticity of the being nursing-professor in the nursing care teaching practice: a Heideggerian hermeneutics
Artigos publicados em periódicos brasileiros de interesse para a medicina do exercício e do esporte: uma revisão
Pulmonary function and quality of life in patients with morbid obesity six months after bariatric surgery
Prediction of genetic gain from selection indices for disease resistance in papaya hybrids
Investigation of the midgut structure and ultrastructure in Cimex lectularius and Cimex pipistrelli (Hemiptera, Cimicidae)
Cimicidae are temporary ectoparasites, which means that they cannot obtain food continuously. Both Cimex species examined here, Cimex lectularius (Linnaeus 1758) and Cimex pipistrelli (Jenyns 1839), can feed on a non-natal host, C. lectularius from humans on bats, C. pipistrelli on humans, but never naturally. The midgut of C. lectularius and C. pipistrelli is composed of three distinct regions—the anterior midgut (AMG), which has a sack-like shape, the long tube-shaped middle midgut (MMG), and the posterior midgut (PMG). The different ultrastructures of the AMG, MMG, and PMG in both of the species examined suggest that these regions must fulfill different functions in the digestive system. Ultrastructural analysis showed that the AMG fulfills the role of storing food and synthesizing and secreting enzymes, while the MMG is the main organ for the synthesis of enzymes, secretion, and the storage of the reserve material. Additionally, both regions, the AMG and MMG, are involved in water absorption in the digestive system of both Cimex species. The PMG is the part of the midgut in which spherites accumulate. The results of our studies confirm the suggestion of former authors that the structure of the digestive tract of insects is not attributed solely to diet but to the basic adaptation of an ancestor
Genetic Ancestry, Race, and Severity of Acutely Decompensated Cirrhosis in Latin America
Background & Aims: Genetic ancestry or racial differences in health outcomes exist in diseases associated with systemic inflammation (eg, COVID-19). This study aimed to investigate the association of genetic ancestry and race with acute-on-chronic liver failure (ACLF), which is characterized by acute systemic inflammation, multi-organ failure, and high risk of short-term death. /
Methods: This prospective cohort study analyzed a comprehensive set of data, including genetic ancestry and race among several others, in 1274 patients with acutely decompensated cirrhosis who were nonelectively admitted to 44 hospitals from 7 Latin American countries. /
Results: Three hundred ninety-five patients (31.0%) had ACLF of any grade at enrollment. Patients with ACLF had a higher median percentage of Native American genetic ancestry and lower median percentage of European ancestry than patients without ACLF (22.6% vs 12.9% and 53.4% vs 59.6%, respectively). The median percentage of African genetic ancestry was low among patients with ACLF and among those without ACLF. In terms of race, a higher percentage of patients with ACLF than patients without ACLF were Native American and a lower percentage of patients with ACLF than patients without ACLF were European American or African American. In multivariable analyses that adjusted for differences in sociodemographic and clinical characteristics, the odds ratio for ACLF at enrollment was 1.08 (95% CI, 1.03–1.13) with Native American genetic ancestry and 2.57 (95% CI, 1.84–3.58) for Native American race vs European American race. /
Conclusions: In a large cohort of Latin American patients with acutely decompensated cirrhosis, increasing percentages of Native American ancestry and Native American race were factors independently associated with ACLF at enrollment
Produção agroeconômica do mangarito submetido a diferentes arranjos espaciais e tratos culturais
- …
