166 research outputs found

    Spin-wave-induced lateral temperature gradient in a YIG thin film/GGG system excited in an ESR cavity

    Full text link
    Lateral thermal gradient of an yttrium iron garnet (YIG) film under the microwave application in the cavity of the electron spin resonance system (ESR) was measured at room temperature by fabricating a Cu/Sb thermocouple onto it. To date, thermal transport in YIG films caused by the Damon-Eshbach mode (DEM) - the unidirectional spin-wave heat conveyer effect - was demonstrated only by the excitation using coplanar waveguides. Here we show that effect exists even under YIG excitation using the ESR cavity - tool often employed to realize spin pumping. The temperature difference observed around the ferromagnetic resonance (FMR) field under the 4 mW microwave power peaked at 13 mK. The observed thermoelectric signal indicates the imbalance of the population between the DEMs that propagate near the top and bottom surfaces of the YIG film. We attribute the DEM population imbalance to the different magnetic damping near the top and bottom YIG surfaces. Additionally, the spin wave dynamics of the system were investigated using the micromagnetic simulations. The micromagnetic simulations confirmed the existence of the DEM imbalance in the system with the increased Gilbert damping at one of the YIG interfaces. The reported results are indispensable for the quantitative estimation of the electromotive force in the spin-charge conversion experiments using ESR cavities.Comment: 18 pages, 6 figure

    Spin Drift in Highly Doped n-type Si

    Get PDF
    A quantitative estimation of spin drift velocity in highly doped n-type silicon (Si) at 8 K is presented in this letter. A local two-terminal Hanle measurement enables the detection of a modulation of spin signals from the Si as a function of an external electric field, and this modulation is analyzed by using a spin drift-diffusion equation and an analytical solution of the Hanle-type spin precession. The analyses reveal that the spin drift velocity is linearly proportional to the electric field. The contribution of the spin drift effect to the spin signals is crosschecked by introducing a modified nonlocal four-terminal method.Comment: 16 pages, 3 figure

    Spin Injection into a Graphene Thin Film at Room Temperature

    Full text link
    We demonstrate spin injection into a graphene thin film with high reliability by using non-local magnetoresistance (MR) measurements, in which the electric current path is completely separated from the spin current path. Using these non-local measurements, an obvious MR effect was observed at room temperature; and the MR effect was ascribed to magnetization reversal of ferromagnetic electrodes. This result is a direct demonstration of spin injection into a graphene thin film. Furthermore, this is the first report of spin injection into molecules at room temperature.Comment: 12 pages, 3 figure

    Bipolar-Driven Large Magnetoresistance in Silicon

    Full text link
    Large linear magnetoresistance (MR) in electron-injected p-type silicon at very low magnetic field is observed experimentally at room temperature. The large linear MR is induced in electron-dominated space-charge transport regime, where the magnetic field modulation of electron-to-hole density ratio controls the MR, as indicated by the magnetic field dependence of Hall coefficient in the silicon device. Contrary to the space-charge-induced MR effect in unipolar silicon device, where the large linear MR is inhomogeneity-induced, our results provide a different insight into the mechanism of large linear MR in non-magnetic semiconductors that is not based on the inhomogeneity model. This approach enables homogeneous semiconductors to exhibit large linear MR at low magnetic fields that until now has only been appearing in semiconductors with strong inhomogeneities.Comment: 23 pages, 4 figures (main text), 6 figures (supplemental material
    corecore