497 research outputs found
Structure and Stability of Si(114)-(2x1)
We describe a recently discovered stable planar surface of silicon, Si(114).
This high-index surface, oriented 19.5 degrees away from (001) toward (111),
undergoes a 2x1 reconstruction. We propose a complete model for the
reconstructed surface based on scanning tunneling microscopy images and
first-principles total-energy calculations. The structure and stability of
Si(114)-(2x1) arises from a balance between surface dangling bond reduction and
surface stress relief, and provides a key to understanding the morphology of a
family of surfaces oriented between (001) and (114).Comment: REVTeX, 4 pages + 3 figures. A preprint with high-resolution figures
is available at http://cst-www.nrl.navy.mil/papers/si114.ps . To be published
in Phys. Rev. Let
A hard metallic material: Osmium Diboride
We calculate the structural and electronic properties of OsB2 using density
functional theory with or without taking into account spin-orbit (SO)
interaction. Our results show that the bulk modulus with and without SO
interaction are 364 and 365 Gpa respectively, both are in good agreement with
experiment (365-395 Gpa). The evidence of covalent bonding of Os-B, which plays
an important role to form a hard material, is indicated both in charge density,
atoms in molecules analysis, and density of states analysis. The good
metallicity and hardness of OsB2 might suggest its potential application as
hard conductors.Comment: Figures improve
Separable Dual Space Gaussian Pseudo-potentials
We present pseudo-potential coefficients for the first two rows of the
periodic table. The pseudo potential is of a novel analytic form, that gives
optimal efficiency in numerical calculations using plane waves as basis set. At
most 7 coefficients are necessary to specify its analytic form. It is separable
and has optimal decay properties in both real and Fourier space. Because of
this property, the application of the nonlocal part of the pseudo-potential to
a wave-function can be done in an efficient way on a grid in real space. Real
space integration is much faster for large systems than ordinary multiplication
in Fourier space since it shows only quadratic scaling with respect to the size
of the system. We systematically verify the high accuracy of these
pseudo-potentials by extensive atomic and molecular test calculations.Comment: 16 pages, 4 postscript figure
Potential super-hard Osmium di-nitride with fluorite structure: First-principles calculations
We have performed systematic first-principles calculations on di-carbide,
-nitride, -oxide and -boride of platinum and osmium with the fluorite
structure. It is found that only PtN, OsN and OsO are
mechanically stable. In particular OsN has the highest bulk modulus of
360.7 GPa. Both the band structure and density of states show that the new
phase of OsN is metallic. The high bulk modulus is owing to the strong
covalent bonding between Os 5\textit{d} and N 2\textit{p} states and the dense
packed fluorite structure.Comment: Phys. Rev. B 74,125118 (2006
Quantum Monte Carlo calculation of Compton profiles of solid lithium
Recent high resolution Compton scattering experiments in lithium have shown
significant discrepancies with conventional band theoretical results. We
present a pseudopotential quantum Monte Carlo study of electron-electron and
electron-ion correlation effects on the momentum distribution of lithium. We
compute the correlation correction to the valence Compton profiles obtained
within Kohn-Sham density functional theory in the local density approximation
and determine that electronic correlation does not account for the discrepancy
with the experimental results. Our calculations lead do different conclusions
than recent GW studies and indicate that other effects (thermal disorder,
core-valence separation etc.) must be invoked to explain the discrepancy with
experiments.Comment: submitted to Phys. Rev.
Ab initio study of the volume dependence of dynamical and thermodynamical properties of silicon
Motivated by the negative thermal expansion observed for silicon between 20 K
and 120 K, we present first an ab initio study of the volume dependence of
interatomic force constants, phonon frequencies of TA(X) and TA(L) modes, and
of the associated mode Gruneisen parameters. The influence of successive
nearest neighbors shells is analysed. Analytical formulas, taking into account
interactions up to second nearest neighbors, are developped for phonon
frequencies of TA(X) and TA(L) modes and the corresponding mode Gruneisen
parameters. We also analyze the volume and pressure dependence of various
thermodynamic properties (specific heat, bulk modulus, thermal expansion), and
point out the effect of the negative mode Gruneisen parameters of the acoustic
branches on these properties. Finally, we present the evolution of the mean
square atomic displacement and of the atomic temperature factor with the
temperature for different volumes, for which the anomalous effects are even
greater.Comment: 24 pages, Revtex 3.0, 11 figures, accepted for publication in Phys.
Rev.
Thermal Conversion of Guanylurea Dicyanamide into Graphitic Carbon Nitride via Prototype CNx Precursors
Guanylurea dicyanamide, [(H2N)C(-O)NHC(NH2)2][N(CN)2], has been synthesized by ion exchange reaction in aqueous solution and structurally characterized by single-crystal X-ray diffraction (C2/c, a = 2249.0(5) pm, b = 483.9(1) pm, c = 1382.4(3) pm, β = 99.49(3)°, V = 1483.8(5) × 106 pm3, T = 130 K). The thermal behavior of the molecular salt has been studied by thermal analysis, temperature-programmed X-ray powder diffraction, FTIR spectroscopy, and mass spectrometry between room temperature and 823 K. The results were interpreted on a molecular level in terms of a sequence of thermally induced addition, cyclization, and elimination reactions. As a consequence, melamine (2,4,6-triamino-1,3,5-triazine) is formed with concomitant loss of HNCO. Further condensation of melamine yields the prototypic CNx precursor melem (2,6,10-triamino-s-heptazine, C6N7(NH2)3), which alongside varying amounts of directly formed CNxHy material transforms into layered CNxHy phases without significant integration of oxygen into the core framework owing to the evaporation of HNCO. Thus, further evidence can be added to melamine and its condensation product melem acting as “key intermediates” in the synthetic pathway toward graphitic CNxHy materials, whose exact constitution is still a point at issue. Due to the characteristic formation process and hydrogen content a close relationship with the polymer melon is evident. In particular, the thermal transformation of guanylurea dicyanamide clearly demonstrates that the formation of volatile compounds such as HNCO during thermal decomposition may render a large variety of previously not considered molecular compounds suitable CNx precursors despite the presence of oxygen in the starting material
Prevalence of Illicit Use and Abuse of Prescription Stimulants, Alcohol, and Other Drugs Among College Students: Relationship with Age at Initiation of Prescription Stimulants
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90112/1/phco.27.5.666.pd
Anomalous enhancement of tetragonality in PbTiO3 induced by negative pressure
Using a first-principles approach based on density-functional theory, we find
that a large tetragonal strain can be induced in PbTiO3 by application of a
negative hydrostatic pressure. The structural parameters and the dielectric and
dynamical properties are found to change abruptly near a crossover pressure,
displaying a ``kinky'' behavior suggestive of proximity to a phase transition.
Analogous calculations for BaTiO3 show that the same effect is also present
there, but at much higher negative pressure. We investigate this unexpected
behavior of PbTiO3 and discuss an interpretation involving a phenomenological
description in terms of a reduced set of relevant degrees of freedom.Comment: 9 pages, with 9 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/st_pbti/index.htm
New Superhard Phases for 3D C60-based Fullerites
We have explored new possible phases of 3D C60-based fullerites using
semiempirical potentials and ab-initio density functional methods. We have
found three closely related structures - two body centered orthorhombic and one
body centered cubic - having 52, 56 and 60 tetracoordinated atoms per molecule.
These 3D polymers result in semiconductors with bulk moduli near 300 GPa, and
shear moduli around 240 GPa, which make them good candidates for new low
density superhard materials.Comment: To be published in Physical Review Letter
- …
