290 research outputs found

    Quantitative stray field imaging of a magnetic vortex core

    Get PDF
    Thin-film ferromagnetic disks present a vortex spin structure whose dynamics, added to the small size (~10 nm) of their core, earned them intensive study. Here we use a scanning nitrogen-vacancy (NV) center microscope to quantitatively map the stray magnetic field above a 1 micron-diameter disk of permalloy, unambiguously revealing the vortex core. Analysis of both probe-to-sample distance and tip motion effects through stroboscopic measurements, allows us to compare directly our quantitative images to micromagnetic simulations of an ideal structure. Slight perturbations with respect to the perfect vortex structure are clearly detected either due to an applied in-plane magnetic field or imperfections of the magnetic structures. This work demonstrates the potential of scanning NV microscopy to map tiny stray field variations from nanostructures, providing a nanoscale, non-perturbative detection of their magnetic texture.Comment: 5 pages, 4 figure

    Magnetometry with nitrogen-vacancy defects in diamond

    Get PDF
    The isolated electronic spin system of the Nitrogen-Vacancy (NV) centre in diamond offers unique possibilities to be employed as a nanoscale sensor for detection and imaging of weak magnetic fields. Magnetic imaging with nanometric resolution and field detection capabilities in the nanotesla range are enabled by the atomic-size and exceptionally long spin-coherence times of this naturally occurring defect. The exciting perspectives that ensue from these characteristics have triggered vivid experimental activities in the emerging field of "NV magnetometry". It is the purpose of this article to review the recent progress in high-sensitivity nanoscale NV magnetometry, generate an overview of the most pertinent results of the last years and highlight perspectives for future developments. We will present the physical principles that allow for magnetic field detection with NV centres and discuss first applications of NV magnetometers that have been demonstrated in the context of nano magnetism, mesoscopic physics and the life sciences.Comment: Review article, 28 pages, 16 figure

    Magnetic-field-dependent photodynamics of single NV defects in diamond: Application to qualitative all-optical magnetic imaging

    Get PDF
    Magnetometry and magnetic imaging with nitrogen-vacancy (NV) defects in diamond rely on the optical detection of electron spin resonance (ESR). However, this technique is inherently limited to magnetic fields that are weak enough to avoid electron spin mixing. Here we focus on the high off-axis magnetic field regime for which spin mixing alters the NV defect spin dynamics. We first study in a quantitative manner the dependence of the NV defect optical properties on the magnetic field vector B. Magnetic-field-dependent time-resolved photoluminescence (PL) measurements are compared to a seven-level model of the NV defect that accounts for field-induced spin mixing. The model reproduces the decreases in (i) ESR contrast, (ii) PL intensity and (iii) excited level lifetime with an increasing off-axis magnetic field. We next demonstrate that those effects can be used to perform all-optical magnetic imaging in the high off-axis magnetic field regime. Using a scanning NV defect microscope, we map the stray field of a magnetic hard disk through both PL and fluorescence lifetime imaging. This all-optical method for high magnetic field imaging at the nanoscale might be of interest in the field of nanomagnetism, where samples producing fields in excess of several tens of milliteslas are typical

    Nanoscale magnetic field mapping with a single spin scanning probe magnetometer

    Get PDF
    We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics

    Measuring the magnetic moment density in patterned ultrathin ferromagnets with submicron resolution

    Get PDF
    We present a new approach to infer the surface density of magnetic moments IsI_s in ultrathin ferromagnetic films with perpendicular anisotropy. It relies on quantitative stray field measurements with an atomic-size magnetometer based on the nitrogen-vacancy center in diamond. The method is applied to microstructures patterned in a 1-nm-thick film of CoFeB. We report measurements of IsI_s with a few percent uncertainty and a spatial resolution in the range of (100(100 nm)2^2, an improvement by several orders of magnitude over existing methods. As an example of application, we measure the modifications of IsI_s induced by local irradiation with He+^+ ions in an ultrathin ferromagnetic wire. This method offers a new route to study variations of magnetic properties at the nanoscale.Comment: 9 pages and 7 figures including main text and Supplemental Informatio

    Scanning nano-spin ensemble microscope for nanoscale magnetic and thermal imaging

    Get PDF
    Quantum sensors based on solid-state spins provide tremendous opportunities in a wide range of fields from basic physics and chemistry to biomedical imaging. However, integrating them into a scanning probe microscope to enable practical, nanoscale quantum imaging is a highly challenging task. Recently, the use of single spins in diamond in conjunction with atomic force microscopy techniques has allowed significant progress towards this goal, but generalisation of this approach has so far been impeded by long acquisition times or by the absence of simultaneous topographic information. Here we report on a scanning quantum probe microscope which solves both issues, by employing a nano-spin ensemble hosted in a nanodiamond. This approach provides up to an order of magnitude gain in acquisition time, whilst preserving sub-100 nm spatial resolution both for the quantum sensor and topographic images. We demonstrate two applications of this microscope. We first image nanoscale clusters of maghemite particles through both spin resonance spectroscopy and spin relaxometry, under ambient conditions. Our images reveal fast magnetic field fluctuations in addition to a static component, indicating the presence of both superparamagnetic and ferromagnetic particles. We next demonstrate a new imaging modality where the nano-spin ensemble is used as a thermometer. We use this technique to map the photo-induced heating generated by laser irradiation of a single gold nanoparticle in a fluid environment. This work paves the way towards new applications of quantum probe microscopy such as thermal/magnetic imaging of operating microelectronic devices and magnetic detection of ion channels in cell membranes.Comment: 22 pages including Supporting Information. Changes to v1: affiliations and funding information updated, plus minor revisions to the main tex

    Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample

    Get PDF
    We show that the orientation of nitrogen-vacancy (NV) defects in diamond can be efficiently controlled through chemical vapor deposition (CVD) growth on a (111)-oriented diamond substrate. More precisely, we demonstrate that spontaneously generated NV defects are oriented with a ~ 97 % probability along the [111] axis, corresponding to the most appealing orientation among the four possible crystallographic axes. Such a nearly perfect preferential orientation is explained by analyzing the diamond growth mechanism on a (111)-oriented substrate and could be extended to other types of defects. This work is a significant step towards the design of optimized diamond samples for quantum information and sensing applications.Comment: 6 pages, 4 figure
    corecore