185 research outputs found
Kinetics of Moisture Sorption and Reverse Bias Degradation in Chip Tantalum Capacitors
Exposure of chip MnO2 tantalum capacitors to humid environments might result in increased ESR, leakage currents, and first turn-on failures. However, there is a lack of literature data on the effect of moisture on reverse bias behavior of the parts. The presence of moisture can also result in pop-corning when a high water vapor pressure develops when moisture absorbed in pores of tantalum slugs vaporizes instantly during soldering process resulting in damage to capacitors. A study of kinetics of moisture ingress to and release from active elements of capacitors would allow a better understanding of degradation mechanisms and is important for preventing failures. In this work, a technique for investigation of moisture sorption and desorption in solid chip tantalum capacitors that employs tantalum slugs as a humidity sensor have been developed and kinetics of the process analyzed for different types of capacitors at temperatures from room to 125 C. A model that relates diffusion characteristics of polymer cases and size of the slugs to characteristic times of moisture sorption has been developed. A strong effect of moisture on long-term degradation of reverse bias currents in MnO2 cathode capacitors has been demonstrated and physical mechanisms discussed
Reliability Issues with PME and BME Ceramic Capacitors
This work is a review of reliability issues specific for low-voltage precious metal electrode (PME) and base metal electrode (BME) multilayer ceramic capacitors (MLCC). A special attention is given to degradation and failures in capacitors with defects, in particular with cracks. Temperature and voltage reliability acceleration factors have been calculated based on approximation of distributions of degradation rates of leakage currents using a general log-linear Weibull model. Results show a substantial difference in behavior of BME and PME capacitors with defects. Mechanisms of degradation and failures in humid and dry environments and risks of overstressing capacitors during highly accelerated life testing (HALT) are discussed
Kinetics of Moisture Sorption and Reverse Bias Degradation in Chip Tantalum Capacitors
Exposure of chip MnO2 tantalum capacitors to humid environments might result in increased ESR, leakage currents, and first turn-on failures. However, there is a lack of literature data on the effect of moisture on reverse bias behavior of the parts. The presence of moisture can also result in pop-corning when a high water vapor pressure develops when moisture absorbed in pores of tantalum slugs vaporizes instantly during soldering process resulting in damage to capacitors. A study of kinetics of moisture ingress to and release from active elements of capacitors would allow a better understanding of degradation mechanisms and is important for preventing failures. In this work, a technique for investigation of moisture sorption and desorption in solid chip tantalum capacitors that employs tantalum slugs as a humidity sensor have been developed and kinetics of the process analyzed for different types of capacitors at temperatures from room to 125 C. A model that relates diffusion characteristics of polymer cases and size of the slugs to characteristic times of moisture sorption has been developed. A strong effect of moisture on long-term degradation of reverse bias currents in MnO2 cathode capacitors has been demonstrated and physical mechanisms discussed
Reliability Issues with PME and BME Ceramic Capacitors
Exposure of chip MnO2 tantalum capacitors to humid environments might result in increased ESR, leakage currents, and first turn-on failures. However, there is a lack of literature data on the effect of moisture on reverse bias behavior of the parts. The presence of moisture can also result in pop-corning when a high water vapor pressure develops when moisture absorbed in pores of tantalum slugs vaporizes instantly during soldering process resulting in damage to capacitors. A study of kinetics of moisture ingress to and release from active elements of capacitors would allow a better understanding of degradation mechanisms and is important for preventing failures. In this work, a technique for investigation of moisture sorption and desorption in solid chip tantalum capacitors that employs tantalum slugs as a humidity sensor have been developed and kinetics of the process analyzed for different types of capacitors at temperatures from room to 125 C. A model that relates diffusion characteristics of polymer cases and size of the slugs to characteristic times of moisture sorption has been developed. A strong effect of moisture on long-term degradation of reverse bias currents in MnO2 cathode capacitors has been demonstrated and physical mechanisms discussed
Parametric Failures in COTS Capacitors
Insertion of COTS components into hi-rel systems require extensive environmental testing of the parts that often results in parametric failures. Based on experience with commercial and hi-rel PME and BME ceramic capacitors and polymer and MnO2 cathode tantalum capacitors, this presentation discusses two major reasons for parametric failures. One is due to the marketing pressure that forces manufacturers to squeeze performance of COTS components thus leaving insufficient margin between the rated and actual characteristics. Another, and probably a more serious reason is degradation of characteristics caused by physico-chemical processes in materials under environmental stresses. Reliability assessment requires development of models to predict behavior of the parts during applications based on accelerated testing that might be outside the specified conditions and target applications. Examples of models developed to simulate and predict wear-out failures are presented. Risks associated with overstressing during HALT are discussed
Reliability of High-Voltage Tantalum Capacitors. Parts 3 and 4)
Weibull grading test is a powerful technique that allows selection and reliability rating of solid tantalum capacitors for military and space applications. However, inaccuracies in the existing method and non-adequate acceleration factors can result in significant, up to three orders of magnitude, errors in the calculated failure rate of capacitors. This paper analyzes deficiencies of the existing technique and recommends more accurate method of calculations. A physical model presenting failures of tantalum capacitors as time-dependent-dielectric-breakdown is used to determine voltage and temperature acceleration factors and select adequate Weibull grading test conditions. This model is verified by highly accelerated life testing (HALT) at different temperature and voltage conditions for three types of solid chip tantalum capacitors. It is shown that parameters of the model and acceleration factors can be calculated using a general log-linear relationship for the characteristic life with two stress levels
Susceptibility to Cracking of Different Lots of CDR35 Capacitors
On-orbit flight anomalies that occurred after several months of operation were attributed to excessive leakage currents in CDR35 style 0.47 microF 50 V capacitors operating at 10 V. In this work, a lot of capacitors similar to the lot that caused the anomaly have been evaluated in parallel with another lot of similar parts to assess their susceptibility to cracking under manual soldering conditions and get insight into a possible mechanism of failure. Leakage currents in capacitors were monitored at different voltages and environmental conditions before and after terminal solder dip testing that was used to simulate thermal shock during manual soldering. Results of cross-sectioning, acoustic microscopy, and measurements of electrical and mechanical characteristics of the parts have been analyzed, and possible mechanisms of failures considered. It is shown that the susceptibility to cracking and failures caused by manual soldering is lot-related. Recommendations for testing that would help to select lots that are more robust against manual soldering stresses and mitigate the risk of failures suggested
Capacitor Test, Evaluation. and Modeling Within NASA Electronic Parts and Packaging (NEPP) Program. "Why Ceramic Capacitors Fracture During Manual Soldering and How to Avoid Failures"
Presentation discusses: (1) Why Multi-Layer Ceramic Capacitors(MLCCs) crack during manual soldering? Workmanship and parts issues. (2) Do existing qualification requirements assure crack-free soldering? MIL-spec Thermal Shock (TS) testing. MIL-spec Resistance to Soldering Heat (RSH) test. (3) What test can assure reliable soldering? Mechanical characteristics of ceramics. Comparison of three TS techniques: LND, TSD, and IWT. (4) Simulation of TS conditions
Analysis of Weibull Grading Test for Solid Tantalum Capacitors
Weibull grading test is a powerful technique that allows selection and reliability rating of solid tantalum capacitors for military and space applications. However, inaccuracies in the existing method and non-adequate acceleration factors can result in significant, up to three orders of magnitude, errors in the calculated failure rate of capacitors. This paper analyzes deficiencies of the existing technique and recommends more accurate method of calculations. A physical model presenting failures of tantalum capacitors as time-dependent-dielectric-breakdown is used to determine voltage and temperature acceleration factors and select adequate Weibull grading test conditions. This, model is verified by highly accelerated life testing (HALT) at different temperature and voltage conditions for three types of solid chip tantalum capacitors. It is shown that parameters of the model and acceleration factors can be calculated using a general log-linear relationship for the characteristic life with two stress levels
- …
