1,335 research outputs found
Ordered spectral statistics in 1D disordered supersymmetric quantum mechanics and Sinai diffusion with dilute absorbers
Some results on the ordered statistics of eigenvalues for one-dimensional
random Schr\"odinger Hamiltonians are reviewed. In the case of supersymmetric
quantum mechanics with disorder, the existence of low energy delocalized states
induces eigenvalue correlations and makes the ordered statistics problem
nontrivial. The resulting distributions are used to analyze the problem of
classical diffusion in a random force field (Sinai problem) in the presence of
weakly concentrated absorbers. It is shown that the slowly decaying averaged
return probability of the Sinai problem, \mean{P(x,t|x,0)}\sim \ln^{-2}t, is
converted into a power law decay, \mean{P(x,t|x,0)}\sim t^{-\sqrt{2\rho/g}},
where is the strength of the random force field and the density of
absorbers.Comment: 10 pages ; LaTeX ; 4 pdf figures ; Proceedings of the meeting
"Fundations and Applications of non-equilibrium statistical mechanics",
Nordita, Stockholm, october 2011 ; v2: appendix added ; v3: figure 2.left
adde
Spectral determinants and zeta functions of Schr\"odinger operators on metric graphs
A derivation of the spectral determinant of the Schr\"odinger operator on a
metric graph is presented where the local matching conditions at the vertices
are of the general form classified according to the scheme of Kostrykin and
Schrader. To formulate the spectral determinant we first derive the spectral
zeta function of the Schr\"odinger operator using an appropriate secular
equation. The result obtained for the spectral determinant is along the lines
of the recent conjecture.Comment: 16 pages, 2 figure
Dephasing due to electron-electron interaction in a diffusive ring
We study the effect of the electron-electron interaction on the weak
localization correction of a ring pierced by a magnetic flux. We compute
exactly the path integral giving the magnetoconductivity for an isolated ring.
The results are interpreted in a time representation. This allows to
characterize the nature of the phase coherence relaxation in the ring. The
nature of the relaxation depends on the time regime (diffusive or ergodic) but
also on the harmonics of the magnetoconductivity. Whereas phase coherence
relaxation is non exponential for the harmonic , it is always exponential
for harmonics . Then we consider the case of a ring connected to
reservoirs and discuss the effect of connecting wires. We recover the behaviour
of the harmonics predicted recently by Ludwig & Mirlin for a large perimeter
(compared to the Nyquist length). We also predict a new behaviour when the
Nyquist length exceeds the perimeter.Comment: 21 pages, RevTeX4, 8 eps figures; version of 10/2006 : eqs.(100-102)
of section V.C correcte
Derivation of the Zakharov equations
This paper continues the study of the validity of the Zakharov model
describing Langmuir turbulence. We give an existence theorem for a class of
singular quasilinear equations. This theorem is valid for well-prepared initial
data. We apply this result to the Euler-Maxwell equations describing
laser-plasma interactions, to obtain, in a high-frequency limit, an asymptotic
estimate that describes solutions of the Euler-Maxwell equations in terms of
WKB approximate solutions which leading terms are solutions of the Zakharov
equations. Because of transparency properties of the Euler-Maxwell equations,
this study is led in a supercritical (highly nonlinear) regime. In such a
regime, resonances between plasma waves, electromagnetric waves and acoustic
waves could create instabilities in small time. The key of this work is the
control of these resonances. The proof involves the techniques of geometric
optics of Joly, M\'etivier and Rauch, recent results of Lannes on norms of
pseudodifferential operators, and a semiclassical, paradifferential calculus
Thermal noise and dephasing due to electron interactions in non-trivial geometries
We study Johnson-Nyquist noise in macroscopically inhomogeneous disordered
metals and give a microscopic derivation of the correlation function of the
scalar electric potentials in real space. Starting from the interacting
Hamiltonian for electrons in a metal and the random phase approximation, we
find a relation between the correlation function of the electric potentials and
the density fluctuations which is valid for arbitrary geometry and
dimensionality. We show that the potential fluctuations are proportional to the
solution of the diffusion equation, taken at zero frequency. As an example, we
consider networks of quasi-1D disordered wires and give an explicit expression
for the correlation function in a ring attached via arms to absorbing leads. We
use this result in order to develop a theory of dephasing by electronic noise
in multiply-connected systems.Comment: 9 pages, 6 figures (version submitted to PRB
Sinai model in presence of dilute absorbers
We study the Sinai model for the diffusion of a particle in a one dimension
random potential in presence of a small concentration of perfect
absorbers using the asymptotically exact real space renormalization method. We
compute the survival probability, the averaged diffusion front and return
probability, the two particle meeting probability, the distribution of total
distance traveled before absorption and the averaged Green's function of the
associated Schrodinger operator. Our work confirms some recent results of
Texier and Hagendorf obtained by Dyson-Schmidt methods, and extends them to
other observables and in presence of a drift. In particular the power law
density of states is found to hold in all cases. Irrespective of the drift, the
asymptotic rescaled diffusion front of surviving particles is found to be a
symmetric step distribution, uniform for , where
is a new, survival length scale ( in the absence of
drift). Survival outside this sharp region is found to decay with a larger
exponent, continuously varying with the rescaled distance . A simple
physical picture based on a saddle point is given, and universality is
discussed.Comment: 21 pages, 2 figure
Conditional stability of unstable viscous shock waves in compressible gas dynamics and MHD
Extending our previous work in the strictly parabolic case, we show that a
linearly unstable Lax-type viscous shock solution of a general quasilinear
hyperbolic--parabolic system of conservation laws possesses a
translation-invariant center stable manifold within which it is nonlinearly
orbitally stable with respect to small perturbations, converging
time-asymptotically to a translate of the unperturbed wave. That is, for a
shock with unstable eigenvalues, we establish conditional stability on a
codimension- manifold of initial data, with sharp rates of decay in all
. For , we recover the result of unconditional stability obtained by
Mascia and Zumbrun. The main new difficulty in the hyperbolic--parabolic case
is to construct an invariant manifold in the absence of parabolic smoothing.Comment: 32p
Lyapunov exponents, one-dimensional Anderson localisation and products of random matrices
The concept of Lyapunov exponent has long occupied a central place in the
theory of Anderson localisation; its interest in this particular context is
that it provides a reasonable measure of the localisation length. The Lyapunov
exponent also features prominently in the theory of products of random matrices
pioneered by Furstenberg. After a brief historical survey, we describe some
recent work that exploits the close connections between these topics. We review
the known solvable cases of disordered quantum mechanics involving random point
scatterers and discuss a new solvable case. Finally, we point out some
limitations of the Lyapunov exponent as a means of studying localisation
properties.Comment: LaTeX, 23 pages, 3 pdf figures ; review for a special issue on
"Lyapunov analysis" ; v2 : typo corrected in eq.(3) & minor change
NMR study of electronic correlations in Mn-doped Ba(Fe 1 − x Co x ) 2 As 2 and BaFe 2 (As 1 − x P x ) 2
International audienceWe probe the real space electronic response to a local magnetic impurity in isovalent and het-erovalent doped BaFe2As2 (122) using Nuclear Magnetic Resonance (NMR). The local moments carried by Mn impurities doped into Ba(Fe1−xCox)2As2 (Co-122) and BaFe2(As1−xPx)2 (P-122) at optimal doping induce a spin polarization in the vicinity of the impurity. The amplitude, shape and extension of this polarisation is given by the real part of the susceptibility χ (r) of FeAs layers, and is consequently related to the nature and strength of the electronic correlations present in the system. We study this polarisation using 75 As NMR in Co-122 and both 75 As and 31 P NMR in P-122. The NMR spectra of Mn-doped materials is made of two essential features. First is a satellite line associated with nuclei located as nearest neighbor of Mn impurities. The analysis of the temperature dependence of the shift of this satellite line shows that Mn local moments behave as isolated Curie moments. The second feature is a temperature dependent broadening of the central line. We show that the broadening of the central line follows the susceptibility of Mn local moments, as expected from typical RKKY-like interactions. This demonstrates that the susceptibility χ (r) of FeAs layers does not make significant contribution to the temperature dependent broadening of the central line. χ (r) is consequently only weakly temperature dependent in optimally doped Co-122 and P-122. This behaviour is in contrast with that of strongly correlated materials such as under-doped cuprate high-Tc superconductors where the central line broadens faster than the impurity susceptibility grows, because of the development of strong magnetic correlations when T is lowered. Moreover, the FeAs layer susceptibility is found quantitatively similar in both heterovalent doped and isolvalent doped BaFe2As2
The Local Time Distribution of a Particle Diffusing on a Graph
We study the local time distribution of a Brownian particle diffusing along
the links on a graph. In particular, we derive an analytic expression of its
Laplace transform in terms of the Green's function on the graph. We show that
the asymptotic behavior of this distribution has non-Gaussian tails
characterized by a nontrivial large deviation function.Comment: 8 pages, two figures (included
- …
