7 research outputs found

    Key Biochemical Attributes to Assess Soil Ecosystem Sustainability

    No full text
    Soil is not a renewable resource, at least within the human timescale. In general, any anthropic exploitation of soils tends to disturb or divert them from a more “natural” development which, by definition, represents the best comparison term for measuring the relative shift from soil sustainability. The continuous degradation of soil health and quality due to abuse of land potentiality or intensive management occurs since decades. Soil microbiota, being ‘the biological engine of the Earth’, provides pivotal services in the soil ecosystem functioning. Hence, management practices protecting soil microbial diversity and resilience, should be pursued. Besides, any abnormal change in rate of innumerable soil biochemical processes, as mediated by microbial communities, may constitute early and sensitive warning of soil homeostasis alteration and, therefore, diagnoses a possible risk for soil sustainability. Among the vastness of soil biochemical processes and related attributes (bioindicators) potentially able to assess the sustainable use of soils, those related to mineralisation-immobilisation of major nutrients (C and N), including enzyme activity (functioning) and composition (community diversity) of microbial biomass, have paramount importance due to their centrality in soil metabolism. In this chapter we have compared, under various pedoclimates, the impact of different agricultural factors (fertilisation, tillage, etc.) under either intensive and sustainable managements on soil microbial community diversity and functioning by both classical and molecular soil quality indicators, in order to outline the most reliable soil biochemical attributes for assessing risky shifts from soil sustainability

    The role of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: A critical update

    No full text

    3D SIP-CESE MHD Model on Six-Component Overset Grid System

    No full text

    Measurement of inclusive and differential cross sections of single top quark production in association with a W boson in proton-proton collisions at 1as=13.6 TeV

    No full text
    Abstract: The first measurement of the inclusive and normalised differential cross sections of single top quark production in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13.6 TeV is presented. The data were recorded with the CMS detector at the LHC in 2022, and correspond to an integrated luminosity of 34.7 fb(-1). The analysed events contain one muon and one electron in the final state. For the inclusive measurement, multivariate discriminants exploiting the kinematic properties of the events are used to separate the signal from the dominant top quark-antiquark production background. A cross section of 82.3 +/- 2.1(stat)(+9.9)(-9.7)(syst) +/- 3.3(lumi) pb is obtained, consistent with the predictions of the standard model. A fiducial region is defined according to the detector acceptance to perform the differential measurements. The resulting differential distributions are unfolded to particle level and show good agreement with the predictions at next-to-leading order in perturbative quantum chromodynamics
    corecore