8,213 research outputs found

    Accretion Disc Particle Accretion in Major Merger Simulations

    Full text link
    A recent approach to simulating localized feedback from active galactic nuclei by Power et al. (2011) uses an accretion disc particle to represent both the black hole and its accretion disc. We have extrapolated and adapted this approach to simulations of Milky Way-sized galaxy mergers containing black holes and explored the impact of the various parameters in this model as well as its resolution dependence. The two key parameters in the model are an effective accretion radius, which determines the radius within which gas particles are added to the accretion disc, and a viscous time-scale which determines how long it takes for material in the accretion disc to accrete on to the black hole itself. We find that there is a limited range of permitted accretion radii and viscous time-scales, with unphysical results produced outside this range. For permitted model parameters, the nuclear regions of simulations with the same resolution follow similar evolutionary paths, producing final black hole masses that are consistent within a factor of two. When comparing the resolution dependence of the model, there is a trend towards higher resolution producing slightly lower mass black holes, but values for the two resolutions studied again agree within a factor of two. We also compare these results to two other AGN feedback algorithms found in the literature. While the evolution of the systems vary, most notably the intermediate total black hole mass, the final black hole masses differ by less than a factor of five amongst all of our models, and the remnants exhibit similar structural parameters. The implication of this accretion model is that, unlike most accretion algorithms, a decoupling of the accretion rate on to the black hole and the local gas properties is permitted and obtained; this allows for black hole growth even after feedback has prevented additional accretion events on to the disc.Comment: 17 pages, accepted to MNRA

    Angular quantization and the density matrix renormalization group

    Full text link
    Path integral techniques for the density matrix of a one-dimensional statistical system near a boundary previously employed in black-hole physics are applied to providing a new interpretation of the density matrix renormalization group: its efficacy is due to the concentration of quantum states near the boundary.Comment: 8 pages, 3 figures, to appear in Mod. Phys. Lett.

    AGN Feedback models: Correlations with star formation and observational implications of time evolution

    Full text link
    We examine the correlation between the star formation rate (SFR) and black hole accretion rate (BHAR) across a suite of different AGN feedback models, using the time evolution of a merger simulation. By considering three different stages of evolution, and a distinction between the nuclear and outer regions of star formation, we consider 63 different cases. Despite many of the feedback models fitting the M-\sigma\ relationship well, there are often distinct differences in the SFR-BHAR correlations, with close to linear trends only being present after the merger. Some of the models also show evolution in the SFR-BHAR parameter space that is at times directly across the long-term averaged SFR-BHAR correlation. This suggests that the observational SFR-BHAR correlation found for ensembles of galaxies is an approximate statistical trend, as suggested by Hickox et al. Decomposing the SFR into nuclear and outer components also highlights notable differences between models and there is only modest agreement with observational studies examining this in Seyfert galaxies. For the fraction of the black hole mass growth from the merger event relative to the final black hole mass, we find as much as a factor of three variation among models. This also translates into a similar variation in the post-starburst black hole mass growth. Overall, we find that while qualitative features are often similar amongst models, precise quantitative analysis shows there can be quite distinct differences.Comment: Accepted to MNRAS. Comments welcom

    Anomaly Inflow and Membrane Dynamics in the QCD Vacuum

    Full text link
    Large NcN_c and holographic arguments, as well as Monte Carlo results, suggest that the topological structure of the QCD vacuum is dominated by codimension-one membranes which appear as thin dipole layers of topological charge. Such membranes arise naturally as D6D6 branes in the holographic formulation of QCD based on IIA string theory. The polarizability of these membranes leads to a vacuum energy θ2\propto \theta^2, providing the origin of nonzero topological susceptibility. Here we show that the axial U(1) anomaly can be formulated as anomaly inflow on the brane surfaces. A 4D gauge transformation at the brane surface separates into a 3D gauge transformation of components within the brane and the transformation of the transverse component. The in-brane gauge transformation induces currents of an effective Chern-Simons theory on the brane surface, while the transformation of the transverse component describes the transverse motion of the brane and is related to the Ramond-Ramond closed string field in the holographic formulation of QCD. The relation between the surface currents and the transverse motion of the brane is dictated by the descent equations of Yang-Mills theory.Comment: 22 pages, 3 figure

    The Improvement Program in Nonrelativistic Lattice QCD

    Full text link
    Progress in the improvement program in nonrelativistic lattice QCD is outlined. The leading radiative corrections to the heavy-quark mass renormalization, energy shift, and two important kinetic coupling coefficients are presented. The reliability of tadpole-improved perturbation theory in determining the energy shift and mass renormalization is demonstrated.Comment: 3 pages in uuencoded-compressed-PostScript format, to appear in the Proceedings of LATTICE 93, Dallas, USA, October 1993; Edinburgh Preprint 93/53

    Toward an Improved Analytical Description of Lagrangian Bias

    Full text link
    We carry out a detailed numerical investigation of the spatial correlation function of the initial positions of cosmological dark matter halos. In this Lagrangian coordinate system, which is especially useful for analytic studies of cosmological feedback, we are able to construct cross-correlation functions of objects with varying masses and formation redshifts and compare them with a variety of analytical approaches. For the case in which both formation redshifts are equal, we find good agreement between our numerical results and the bivariate model of Scannapieco & Barkana (2002; SB02) at all masses, redshifts, and separations, while the model of Porciani et al. (1998) does well for all parameters except for objects with different masses at small separations. We find that the standard mapping between Lagrangian and Eulerian bias performs well for rare objects at all separations, but fails if the objects are highly-nonlinear (low-sigma) peaks. In the Lagrangian case in which the formation redshifts differ, the SB02 model does well for all separations and combinations of masses, apart from a discrepancy at small separations in situations in which the smaller object is formed earlier and the difference between redshifts or masses is large. As this same limitation arises in the standard approach to the single-point progenitor distribution developed by Lacey & Cole (1993), we conclude that a more complete understanding of the progenitor distribution is the most important outstanding issue in the analytic modeling of Lagrangian bias.Comment: 22 pages, 8 figures, ApJ, in pres
    corecore