376 research outputs found
Skin flora: Differences Between People Affected by Albinism and Those with Normally Pigmented Skin in Northern Tanzania - Cross Sectional Study.
Skin flora varies from one site of the body to another. Individual's health, age and gender determine the type and the density of skin flora. A 1 cm² of the skin on the sternum was rubbed with sterile cotton swab socked in 0.9% normal saline and plated on blood agar. This was cultured at 35 °C. The bacteria were identified by culturing on MacConkey agar, coagulase test, catalase test and gram staining. Swabs were obtained from 66 individuals affected by albinism and 31 individuals with normal skin pigmentation. Those with normal skin were either relatives or staying with the individuals affected by albinism who were recruited for the study. The mean age of the 97 recruited individuals was 30.6 (SD ± 14.9) years. The mean of the colony forming units was 1580.5 per cm2. Those affected by albinism had a significantly higher mean colony forming units (1680 CFU per cm²) as compared with 453.5 CFU per cm² in those with normally pigmented skin (p = 0.023). The skin type and the severity of sun- damaged skin was significantly associated with a higher number of colony forming units (p = 0.038). Individuals affected by albinism have a higher number of colony forming units which is associated with sun- damaged skin
Effect of different Mueller–Hinton agars on tigecycline disc diffusion susceptibility for Acinetobacter spp.
Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients
With increasing clinical emergence of multidrug-resistant Gram-negative pathogens and the paucity of new agents to combat these infections, colistin (administered as its inactive prodrug colistin methane-sulfonate [CMS]) has reemerged as a treatment option, especially for critically ill patients. There has been a dearth of pharmacokinetic (PK) data available to guide dosing in critically ill patients, including those on renal replacement therapy. In an ongoing study to develop a population PK model for CMS and colistin, 105 patients have been studied to date; these included 12 patients on hemodialysis and 4 on continuous renal replacement therapy. For patients not on renal replacement, there was a wide variance in creatinine clearance, ranging from 3 to 169 ml/min/1.73 m 2. Each patient was treated with a physician-selected CMS dosage regimen, and 8 blood samples for PK analysis were collected across a dosage interval on day 3 or 4 of therapy. A linear PK model with two compartments for CMS and one compartment for formed colistin best described the data. Covariates included creatinine clearance on the total clearance of CMS and colistin, as well as body weight on the central volume of CMS. Model-fitted parameter estimates were used to derive suggested loading and maintenance dosing regimens for various categories of patients, including those on hemodialysis and continuous renal replacement. Based on our current understanding of colistin PK and pharmacodynamic relationships, colistin may best be used as part of a highly active combination, especially for patients with moderate to good renal function and/or for organisms with MICs of ≥1.0 mg/liter
Influence of occupational exposure to pigs or chickens on human gut microbiota composition in Thailand.
Pig farming's influence on human gut microbiota has been observed previously, but its pervasiveness is unclear. We therefore aimed at studying whether pig farming influenced human gut microbiota composition in Thailand and whether poultry farming did too. We collected human stool samples (71 pig farmers, 131 chicken farmers, 55 non-farmers) for 16S rRNA sequencing and performed subsequent DADA2 analyses of amplicon sequence variants. We found that Alpha diversity values were highest among chicken farmers. Relative abundances of Prevotellaceae were significantly higher among pig farmers than among chicken farmers and non-farmers (p < 0.001). Beta diversity plots revealed different clustering according to occupation. The presence or absence of antimicrobial-resistant Escherichia coli was not associated with changes in gut microbiota composition. In conclusion, occupation was the strongest factor influencing gut microbiota composition in Thailand. We hypothesize that Prevotellaceae amplicon sequence variants are transmitted from pigs to pig farmers
A systematic review of educational interventions to change behaviour of prescribers in hospital settings, with a particular emphasis on new prescribers.
AIMS: Prescribing is a complex task and a high risk area of clinical practice. Poor prescribing occurs across staff grades and settings but new prescribers are attributed much of the blame. New prescribers may not be confident or even competent to prescribe and probably have different support and development needs than their more experienced colleagues. Unfortunately, little is known about what interventions are effective in this group. Previous systematic reviews have not distinguished between different grades of staff, have been narrow in scope and are now out of date. Therefore, to inform the design of educational interventions to change prescribing behaviour, particularly that of new prescibers, we conducted a systematic review of existing hospital-based interventions. METHODS: Embase, Medline, SIGLE, Cinahl and PsychINFO were searched for relevant studies published 1994-2010. Studies describing interventions to change the behaviour of prescribers in hospital settings were included, with an emphasis on new prescibers. The bibliographies of included papers were also searched for relevant studies. Interventions and effectiveness were classified using existing frameworks and the quality of studies was assessed using a validated instrument. RESULTS: Sixty-four studies were included in the review. Only 13% of interventions specifically targeted new prescribers. Most interventions (72%) were deemed effective in changing behaviour but no particular type stood out as most effective. CONCLUSION: Very few studies have tailored educational interventions to meet needs of new prescribers, or distinguished between new and experienced prescribers. Educational development and research will be required to improve this important aspect of early clinical practice
Developing core elements and checklist items for global hospital antimicrobial stewardship programmes:a consensus approach
International audienc
Optical dna mapping of plasmids reveals clonal spread of carbapenem-resistant klebsiella pneumoniae in a large thai hospital
Carbapenem-resistant Klebsiella pneumoniae (CR-KP) in patients admitted to hospitals pose a great challenge to treatment. The genes causing resistance to carbapenems are mostly found in plasmids, mobile genetic elements that can spread easily to other bacterial strains, thus exacerbating the problem. Here, we studied 27 CR-KP isolates collected from different types of samples from 16 patients admitted to the medical ward at Siriraj Hospital in Bangkok, Thailand, using next generation sequencing (NGS) and optical DNA mapping (ODM). The majority of the isolates belonged to sequence type (ST) 16 and are described in detail herein. Using ODM, we identified the plasmid carrying the blaNDM-1 gene in the ST16 isolates and the plasmids were very similar, highlighting the possibility of using ODM of plasmids as a surrogate marker of nosocomial spread of bacteria. We also demonstrated that ODM could identify that the blaCTX-M-15 and blaOXA-232 genes in the ST16 isolates were encoded on separate plasmids from the blaNDM-1 gene and from each other. The other three isolates belonged to ST147 and each of them had distinct plasmids encoding blaNDM-1
Comparative pharmacodynamics of four different carbapenems in combination with polymyxin B against carbapenem-resistant Acinetobacter baumannii
The objective of this study was to determine the comparative pharmacodynamics of four different carbapenems in combination with polymyxin B (PMB) against carbapenem-resistant Acinetobacter baumannii isolates using time–kill experiments at two different inocula. Two A. baumannii strains (03-149-1 and N16870) with carbapenem minimum inhibitory concentrations (MICs) ranging from 8 to 64 mg/L were investigated in 48-h time–kill experiments using starting inocula of 106 CFU/mL and 108 CFU/mL. Concentration arrays of ertapenem, doripenem, meropenem and imipenem at 0.25×, 0.5×, 1×, 1.5× and 2× published maximum serum concentration (Cmax) values (Cmax concentrations of 12, 21, 48 and 60 mg/L, respectively) were investigated in the presence of 1.5 mg/L PMB. Use of carbapenems without PMB resulted in drastic re-growth. All carbapenem combinations were able to achieve a ≥3 log10 CFU/mL reduction by 4 h against both strains at 106 CFU/mL, whereas maximum reductions against strain 03-149-1 at 108 CFU/mL were 1.0, 3.2, 2.2 and 3.3 log10 CFU/mL for ertapenem, doripenem, meropenem and imipenem, respectively. None of the combinations were capable of reducing 108 CFU/mL of N16870 by ≥2 log10 CFU/mL. Ertapenem combinations consistently displayed the least activity, whereas doripenem, meropenem and imipenem combinations had similar activities that were poorly predicted by carbapenem MICs. As doripenem, meropenem, or imipenem displayed similar pharmacodyanmics in combination, the decision of which carbapenem to use in combination with PMB may be based on toxicodynamic profiles if drastic discordance in MICs is not present
Paradoxical Effect of Polymyxin B: High Drug Exposure Amplifies Resistance in Acinetobacter baumannii
ABSTRACT Administering polymyxin antibiotics in a traditional fashion may be ineffective against Gram-negative ESKAPE ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , and Enterobacter species) pathogens. Here, we explored increasing the dose intensity of polymyxin B against two strains of Acinetobacter baumannii in the hollow-fiber infection model. The following dosage regimens were simulated for polymyxin B ( t 1/2 = 8 h): non-loading dose (1.43 mg/kg of body weight every 12 h [q12h]), loading dose (2.22 mg/kg q12h for 1 dose and then 1.43 mg/kg q12h), front-loading dose (3.33 mg/kg q12h for 1 dose followed by 1.43 mg/kg q12h), burst (5.53 mg/kg for 1 dose), and supraburst (18.4 mg/kg for 1 dose). Against both A. baumannii isolates, a rapid initial decline in the total population was observed within the first 6 h of polymyxin exposure, whereby greater polymyxin B exposure resulted in greater maximal killing of −1.25, −1.43, −2.84, −2.84, and −3.40 log 10 CFU/ml within the first 6 h. Unexpectedly, we observed a paradoxical effect whereby higher polymyxin B exposures dramatically increased resistant subpopulations that grew on agar containing up to 10 mg/liter of polymyxin B over 336 h. High drug exposure also proliferated polymyxin-dependent growth. A cost-benefit pharmacokinetic/pharmacodynamic relationship between 24-h killing and 336-h resistance was explored. The intersecting point, where the benefit of bacterial killing was equal to the cost of resistance, was an f AUC 0–24 (area under the concentration-time curve from 0 to 24 h for the free, unbound fraction of drug) of 38.5 mg · h/liter for polymyxin B. Increasing the dose intensity of polymyxin B resulted in amplification of resistance, highlighting the need to utilize polymyxins as part of a combination against high-bacterial-density A. baumannii infections
Polymyxin-resistant, carbapenem-resistant Acinetobacter baumannii is eradicated by a triple combination of agents that lack individual activity
Objectives: The emergence of polymyxin resistance threatens to leave clinicians with few options for combatting drug-resistant Acinetobacter baumannii . The objectives of the current investigation were to define the in vitro emergence of polymyxin resistance and identify a combination regimen capable of eradicating A. baumannii with no apparent drug susceptibilities.
Methods: Two clonally related, paired, A. baumannii isolates collected from a critically ill patient who developed colistin resistance while receiving colistin methanesulfonate in a clinical population pharmacokinetic study were evaluated: an A. baumannii isolate collected before (03-149.1, polymyxin-susceptible, MIC 0.5 mg/L) and an isolate collected after (03-149.2, polymyxin-resistant, MIC 32 mg/L, carbapenem-resistant, ampicillin/sulbactam-resistant). Using the patient's unique pharmacokinetics, the patient's actual regimen received in the clinic was recreated in a hollow-fibre infection model (HFIM) to track the emergence of polymyxin resistance against 03-149.1. A subsequent HFIM challenged the pan-resistant 03-149.2 isolate against polymyxin B, meropenem and ampicillin/sulbactam alone and in two-drug and three-drug combinations.
Results: Despite achieving colistin steady-state targets of an AUC 0-24 >60 mg·h/L and C avg of >2.5 mg/L, colistin population analysis profiles confirmed the clinical development of polymyxin resistance. During the simulation of the patient's colistin regimen in the HFIM, no killing was achieved in the HFIM and amplification of polymyxin resistance was observed by 96 h. Against the polymyxin-resistant isolate, the triple combination of polymyxin B, meropenem and ampicillin/sulbactam eradicated the A. baumannii by 96 h in the HFIM, whereas monotherapies and double combinations resulted in regrowth.
Conclusions: To combat polymyxin-resistant A. baumannii , the triple combination of polymyxin B, meropenem and ampicillin/sulbactam holds great promise
- …
