465 research outputs found
3D printing of gas jet nozzles for laser-plasma accelerators
Recent results on laser wakefield acceleration in tailored plasma channels
have underlined the importance of controlling the density profile of the gas
target. In particular it was reported that appropriate density tailoring can
result in improved injection, acceleration and collimation of laser-accelerated
electron beams. To achieve such profiles innovative target designs are
required. For this purpose we have reviewed the usage of additive layer
manufacturing, commonly known as 3D printing, in order to produce gas jet
nozzles. Notably we have compared the performance of two industry standard
techniques, namely selective laser sintering (SLS) and stereolithography (SLA).
Furthermore we have used the common fused deposition modeling (FDM) to
reproduce basic gas jet designs and used SLA and SLS for more sophisticated
nozzle designs. The nozzles are characterized interferometrically and used for
electron acceleration experiments with the Salle Jaune terawatt laser at
Laboratoire d'Optique Appliqu\'ee
Energy boost in laser wakefield accelerators using sharp density transitions
The energy gain in laser wakefield accelerators is limited by dephasing
between the driving laser pulse and the highly relativistic electrons in its
wake. Since this phase depends on both the driver and the cavity length, the
effects of dephasing can be mitigated with appropriate tailoring of the plasma
density along propagation. Preceding studies have discussed the prospects of
continuous phase-locking in the linear wakefield regime. However, most
experiments are performed in the highly non-linear regime and rely on
self-guiding of the laser pulse. Due to the complexity of the driver evolution
in this regime it is much more difficult to achieve phase locking. As an
alternative we study the scenario of rapid rephasing in sharp density
transitions, as was recently demonstrated experimentally. Starting from a
phenomenological model we deduce expressions for the electron energy gain in
such density profiles. The results are in accordance with particle-in-cell
simulations and we present gain estimations for single and multiple stages of
rephasing
Comment on “Electron Temperature Scaling in Laser Interaction with Solids”
International audienceA Comment on the Letter by T. Kluge et al., Phys. Rev. Lett. 107, 205003 (2011). The authors of the Letter offer a Reply
Self-generation of megagauss magnetic fields during the expansion of a plasma
International audienceThe expansion of a plasma slab into a vacuum is studied using one-dimensional and two-dimensional particle-in-cell simulations. As electrons transfer their longitudinal kinetic energy to ions during the expansion, the electron temperature becomes anisotropic. Once this anisotropy exceeds a threshold value, it drives the Weibel instability, leading to magnetic fields in the megagauss range. These fields induce energy transfer between the longitudinal and transverses directions, which influences the expansion. The impact of a cold electron population on this phenomenon is also investigated. Plasma expansion is a fundamental process which occurs in very different fields, such as astrophysics ͓1,2͔, laser-plasma ion acceleration ͓3–5͔ and thin-film deposition ͓6͔. This phenomenon is usually described by simple one-dimensional models ͓7–9͔. Yet, even when the system is translation-invariant along the plasma surface, several effects ͑e.g., Coulomb collisions ͓10͔͒ can induce momentum transfer between the longitudinal and transverse directions. The purely one-dimensional ͑1D͒ description is thus, in general, inaccurate. In this paper, we show that self-generated magnetic fields can lead to such momentum transfer during the expansion of a collisionless plasma slab. This study is of particular interest in the context of laser-plasma ion acceleration , where an intense laser pulse is focused on a thin foil to create a hot electron population that transfers progressively its energy to ions via the ambipolar electric field at the plasma surface ͓11͔. We assume here that the electron distribution is initially Maxwellian with an isotropic temperature. As the plasma expands, the longitudinal temperature T ʈ decreases and the anisotropy parameter A = T Ќ / T ʈ − 1 increases, which eventually leads to the growth of the Weibel instability ͓12–18͔. The most unstable modes are obtained for k = k x e x , where e x is a unit vector normal to the plasma surface. In this case, the maximum unstable wave vector is k
Comment on “Transition to the Relativistic Regime in High Order Harmonic Generation”
International audienceIn [Phys. Rev. Lett. 98, 103902 (2007)], Tarasevitch et al. demonstrate the existence of two generation mechanisms for laser high-order harmonicsfrom overdense plasmas. One of these mechanisms leads to harmonics with frequencies up to the maximum plasmafrequency of the target and occurs even at nonrelativistic laser intensities. We show that the mechanism responsiblefor these harmonics is coherent wake emission (CWE), a process that significantly differs from thequalitative model proposed by these authors, and it leads toa different interpretation of several essential features of this emission
Probing electron acceleration and X-ray emission in laser-plasma accelerator
While laser-plasma accelerators have demonstrated a strong potential in the
acceleration of electrons up to giga-electronvolt energies, few experimental
tools for studying the acceleration physics have been developed. In this paper,
we demonstrate a method for probing the acceleration process. A second laser
beam, propagating perpendicular to the main beam is focused in the gas jet few
nanosecond before the main beam creates the accelerating plasma wave. This
second beam is intense enough to ionize the gas and form a density depletion
which will locally inhibit the acceleration. The position of the density
depletion is scanned along the interaction length to probe the electron
injection and acceleration, and the betatron X-ray emission. To illustrate the
potential of the method, the variation of the injection position with the
plasma density is studied
Observation of longitudinal and transverse self-injections in laser-plasma accelerators
Laser-plasma accelerators can produce high quality electron beams, up to
giga-electronvolts in energy, from a centimeter scale device. The properties of
the electron beams and the accelerator stability are largely determined by the
injection stage of electrons into the accelerator. The simplest mechanism of
injection is self-injection, in which the wakefield is strong enough to trap
cold plasma electrons into the laser wake. The main drawback of this method is
its lack of shot-to-shot stability. Here we present experimental and numerical
results that demonstrate the existence of two different self-injection
mechanisms. Transverse self-injection is shown to lead to low stability and
poor quality electron beams, because of a strong dependence on the intensity
profile of the laser pulse. In contrast, longitudinal injection, which is
unambiguously observed for the first time, is shown to lead to much more stable
acceleration and higher quality electron beams.Comment: 7 pages, 7 figure
Regimes of expansion of a collisional plasma into a vacuum
International audienceThe effect of elastic Coulomb collisions on the one-dimensional expansion of a plasma slab is studied in the classical limit, using an electrostatic particle-in-cell code. Two regimes of interest are identified. For a collision rate of few hundreds of the inverse of the expansion characteristic time the electron distribution function remains isotropic and Maxwellian with a homogeneous temperature, during all the expansion. In this case, the expansion can be approached by a three-dimensional version of the hybrid model developed by Mora [P. Mora, Phys. Rev. E 72, 056401 2005]. When the collision rate becomes somewhat greater than the plasma is divided in two parts: an inner part which expands adiabatically as an ideal gas and an outer part which undergoes an isothermal expansion
Optical Transverse Injection in Laser-Plasma Acceleration
International audienceLaser-wakefield acceleration constitutes a promising technology for future electron accelerators. A crucial step in such an accelerator is the injection of electrons into the wakefield, which will largely determine the properties of the extracted beam. We present here a new paradigm of colliding-pulse injection, which allows us to generate high-quality electron bunches having both a very low emittance (0.17 mm·mrad) and a low energy spread (2%), while retaining a high charge (∼100 pC) and a short duration (3 fs). In this paradigm, the pulse collision provokes a transient expansion of the accelerating bubble, which then leads to transverse electron injection. This mechanism contrasts with previously observed optical injection mechanisms, which were essentially longitudinal. We also specify the range of parameters in which this new type of injection occurs and show that it is within reach of existing high-intensity laser facilities
Transverse dynamics of an intense electron bunch traveling through a pre-ionized plasma
International audienceThe propagation of a relativistic electron bunch through a plasma is an important problem in both plasma-wakefield acceleration and laser-wakefield acceleration. In those situations, the charge of the accelerated bunch is usually large enough to drive a relativistic wakefield, which then affects the transverse dynamics of the bunch itself. Yet to date, there is no fully relativistic, fully electromagnetic model that describes the generation of this wakefield and its feedback on the bunch. In this article, we derive a model which takes into account all the relevant relativistic and electromagnetic effects involved in the problem. A very good agreement is found between the model and the results of particle-in-cell simulations. The implications of high-charge effects for the transport of the bunch are discussed in detail
- …
