8 research outputs found
Flexural strength of acrylic resin repairs processed by different methods: water bath, microwave energy and chemical polymerization
Denture fractures are common in daily practice, causing inconvenience to the patient and to the dentists. Denture repairs should have adequate strength, dimensional stability and color match, and should be easily and quickly performed as well as relatively inexpensive. OBJECTIVE: The aim of this study was to evaluate the flexural strength of acrylic resin repairs processed by different methods: warm water-bath, microwave energy, and chemical polymerization. MATERIAL AND METHODS: Sixty rectangular specimens (31x10x2.5 mm) were made with warm water-bath acrylic resin (Lucitone 550) and grouped (15 specimens per group) according to the resin type used to make repair procedure: 1) specimens of warm water-bath resin (Lucitone 550) without repair (control group); 2) specimens of warm water-bath resin repaired with warm water-bath; 3) specimens of warm water-bath resin repaired with microwave resin (Acron MC); 4) specimens of warm water-bath resin repaired with autopolymerized acrylic resin (Simplex). Flexural strength was measured with the three-point bending in a universal testing machine (MTS 810 Material Test System) with load cell of 100 kgf under constant speed of 5 mm/min. Data were analyzed statistically by Kruskal-Wallis test (p<0.05). RESULTS: The control group showed the best result (156.04±1.82 MPa). Significant differences were found among repaired specimens and the results were decreasing as follows: group 3 (43.02±2.25 MPa), group 2 (36.21±1.20 MPa) and group 4 (6.74±0.85 MPa). CONCLUSION: All repaired specimens demonstrated lower flexural strength than the control group. Repairs with autopolymerized acrylic resin showed the lowest flexural strength
Noncardiac Vascular Toxicities of Vascular Endothelial Growth Factor Inhibitors in Advanced Cancer: A Review
This review focuses on the current understanding of the pathophysiology and mechanisms of macrovascular toxicities (hypertension, hemorrhage, and thromboembolism) of molecularly targeted anticancer therapies, their incidence and severity, the current clinical management, and implications in the advanced cancer setting
Determination of energy and spatial distribution of oxide border traps in In<inf>0.53</inf>Ga<inf>0.47</inf>As MOS capacitors from capacitance-voltage characteristics measured at various temperatures
In this work, we have systematically studied the frequency dispersion of the capacitance-voltage (C-V) characteristics of In0.53Ga 0.47As metal-oxide-semiconductor (MOS) capacitors in accumulation region at various temperatures based on a distributed border traps model. An empirical method to evaluate the frequency and temperature dependent response of the border traps distributed along the depth from the interface into the oxide is established. While the frequency dependent response results from the dependence of the time constant of the border traps on their depths, the temperature dependent response is ascribed to the thermal activated capture cross-section of the border traps due to the phonon-related inelastic capturing process. Consequently, it is revealed that the frequency dispersion behaviors of the accumulation capacitance at different temperatures actually reflect the spatial distribution of the border traps. On this basis, we propose a methodology to extract the border trap distribution in energy and space with emphasis on analyzing the C-V characteristics measured from low to high temperatures in sequence. © 2014 Elsevier Ltd. All rights reserved
