150 research outputs found

    Turbulent Cascade Direction and Lagrangian Time-Asymmetry

    Full text link
    We establish Lagrangian formulae for energy conservation anomalies involving the discrepancy between short-time two-particle dispersion forward and backward in time. These results are facilitated by a rigorous version of the Ott-Mann-Gaw\c{e}dzki relation, sometimes described as a "Lagrangian analogue of the 4/5ths law". In particular, we prove that for any space-time L3L^3 weak solution of the Euler equations, the Lagrangian forward/backward dispersion measure matches on to the energy defect in the sense of distributions. For strong limits of d3d\geq3 dimensional Navier-Stokes solutions the defect distribution coincides with the viscous dissipation anomaly. The Lagrangian formula shows that particles released into a 3d3d turbulent flow will initially disperse faster backward-in-time than forward, in agreement with recent theoretical predictions of Jucha et. al (2014). In two dimensions, we consider strong limits of solutions of the forced Euler equations with increasingly high-wavenumber forcing as a model of an ideal inverse cascade regime. We show that the same Lagrangian dispersion measure matches onto the anomalous input from the infinite-frequency force. As forcing typically acts as an energy source, this leads to the prediction that particles in 2d2d typically disperse faster forward in time than backward, which is opposite to what occurs in 3d3d. Time-asymmetry of the Lagrangian dispersion is thereby closely tied to the direction of the turbulent cascade, downscale in d3d\geq 3 and upscale in d=2d=2. These conclusions lend support to the conjecture of Eyink & Drivas (2015) that a similar connection holds for time-asymmetry of Richardson two-particle dispersion and cascade direction, albeit at longer times.Comment: 16 pages. Some claims in the proof of Theorem 1 are rigorously justified. Accepted to J. Nonlinear Scienc

    Cascades and Dissipative Anomalies in Compressible Fluid Turbulence

    Full text link
    We investigate dissipative anomalies in a turbulent fluid governed by the compressible Navier-Stokes equation. We follow an exact approach pioneered by Onsager, which we explain as a non-perturbative application of the principle of renormalization-group invariance. In the limit of high Reynolds and P\'eclet numbers, the flow realizations are found to be described as distributional or "coarse-grained" solutions of the compressible Euler equations, with standard conservation laws broken by turbulent anomalies. The anomalous dissipation of kinetic energy is shown to be due not only to local cascade, but also to a distinct mechanism called pressure-work defect. Irreversible heating in stationary, planar shocks with an ideal-gas equation of state exemplifies the second mechanism. Entropy conservation anomalies are also found to occur by two mechanisms: an anomalous input of negative entropy (negentropy) by pressure-work and a cascade of negentropy to small scales. We derive "4/5th-law"-type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents) required to sustain the cascades. We compare our approach with alternative theories and empirical evidence. It is argued that the "Big Power-Law in the Sky" observed in electron density scintillations in the interstellar medium is a manifestation of a forward negentropy cascade, or an inverse cascade of usual thermodynamic entropy

    Cascades and Dissipative Anomalies in Relativistic Fluid Turbulence

    Full text link
    We develop first-principles theory of relativistic fluid turbulence at high Reynolds and P\'eclet numbers. We follow an exact approach pioneered by Onsager, which we explain as a non-perturbative application of the principle of renormalization-group invariance. We obtain results very similar to those for non-relativistic turbulence, with hydrodynamic fields in the inertial-range described as distributional or "coarse-grained" solutions of the relativistic Euler equations. These solutions do not, however, satisfy the naive conservation-laws of smooth Euler solutions but are afflicted with dissipative anomalies in the balance equations of internal energy and entropy. The anomalies are shown to be possible by exactly two mechanisms, local cascade and pressure-work defect. We derive "4/5th-law"-type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents) required for their non-vanishing. We also investigate the Lorentz covariance of the inertial-range fluxes, which we find is broken by our coarse-graining regularization but which is restored in the limit that the regularization is removed, similar to relativistic lattice quantum field theory. In the formal limit as speed of light goes to infinity, we recover the results of previous non-relativistic theory. In particular, anomalous heat input to relativistic internal energy coincides in that limit with anomalous dissipation of non-relativistic kinetic energy
    corecore