178 research outputs found

    Host associations of mosquitoes at eastern equine encephalitis virus foci in Connecticut, USA

    Get PDF
    BACKGROUND: Eastern equine encephalitis virus (EEEV) is a highly pathogenic mosquito-borne arbovirus, with active transmission foci in freshwater hardwood swamps in eastern North America, where enzootic transmission is maintained between the ornithophilic mosquito, Culiseta melanura, and wild passerine birds. The role of other locally abundant mosquito species in virus transmission and their associations with vertebrate hosts as sources of blood meals within these foci are largely unknown but are of importance in clarifying the dynamics of enzootic and epidemic/epizootic transmission. METHODS: Blood-engorged mosquitoes were collected from resting boxes at four established EEEV foci in Connecticut during 2010–2011. Mosquitoes were identified to species, and the identity of vertebrate hosts was determined based on mitochondrial cytochrome b and/or cytochrome c oxidase subunit I gene sequences of polymerase chain reaction products. RESULTS: The vertebrate hosts of 378 (50.3 % of engorged mosquitoes) specimens, representing 12 mosquito species, were identified. Culiseta morsitans (n = 54; 67.5 %), Culex restuans (n = 4; 66.7 %), and Cx. pipiens (n = 2; 100 %) acquired blood meals exclusively from avian hosts, whereas Aedes cinereus (n = 6; 66.7 %), Ae. canadensis (n = 2; 100 %), and Ae. stimulans (n = 1; 100 %) obtained blood meals solely from mammals. Species that fed opportunistically on both avian and mammalian hosts included: Ae. thibaulti (n = 21 avian, and n = 181 mammalian; 57.2 %), Anopheles punctipennis (n = 8 and n = 40; 44.0 %), An. quadrimaculatus (n = 1 and n = 23; 35.7 %), Coquillettidia perturbans (n = 3 and n = 3; 46.2 %) and Ae. abserratus (n = 1 and n = 2; 23.1 %). Culex territans obtained blood meals from avian and amphibian hosts (n = 18 and n = 5; 26.6 %). Mixed blood meals originating from both avian and mammalian hosts were identified in An. quadrimaculatus (n = 1), and Cx. territans (n = 2). CONCLUSIONS: Our findings indicate that wood thrush, tufted titmouse, and a few other avian species serve as hosts for mosquitoes, and likely contribute to amplification of EEEV. Our study supports the role of Cs. morsitans in enzootic transmission of EEEV among avian species. Culex territans will seek blood from multiple vertebrate classes, suggesting that this species may contribute to epizootic transmission of the virus. Our findings support roles for Cq. perturbans and An. quadrimaculatus as epidemic/epizootic vectors to humans, horses, and white-tailed deer. Despite its abundance, the potential of Ae. thibaulti to serve as a “bridge vector” for EEEV remains unclear in the absence of any definitive knowledge on its competency for the virus. The contribution of white-tailed deer to the dynamics of EEEV transmission is not fully understood, but findings indicate repeated exposure due to frequent feeding by vector competent mosquito species

    Avian Host-Selection by Culex pipiens in Experimental Trials

    Get PDF
    Evidence from field studies suggests that Culex pipiens, the primary mosquito vector of West Nile virus (WNV) in the northeastern and north central United States, feeds preferentially on American robins (Turdus migratorius). To determine the contribution of innate preferences to observed preference patterns in the field, we conducted host preference trials with a known number of adult female C. pipiens in outdoor cages comparing the relative attractiveness of American robins with two common sympatric bird species, European starling, Sternus vulgaris and house sparrow, Passer domesticus. Host seeking C. pipiens were three times more likely to enter robin-baited traps when with the alternate host was a European starling (n = 4 trials; OR = 3.06; CI [1.42–6.46]) and almost twice more likely when the alternative was a house sparrow (n = 8 trials; OR = 1.80; CI = [1.22–2.90]). There was no difference in the probability of trap entry when two robins were offered (n = 8 trials). Logistic regression analysis determined that the age, sex and weight of the birds, the date of the trial, starting-time, temperature, humidity, wind-speed and age of the mosquitoes had no effect on the probability of a choosing a robin over an alternate bird. Findings indicate that preferential feeding by C. pipiens mosquitoes on certain avian hosts is likely to be inherent, and we discuss the implications innate host preferences may have on enzootic WNV transmission

    Avian Host-Selection by Culex pipiens in Experimental Trials

    Get PDF
    Evidence from field studies suggests that Culex pipiens, the primary mosquito vector of West Nile virus (WNV) in the northeastern and north central United States, feeds preferentially on American robins (Turdus migratorius). To determine the contribution of innate preferences to observed preference patterns in the field, we conducted host preference trials with a known number of adult female C. pipiens in outdoor cages comparing the relative attractiveness of American robins with two common sympatric bird species, European starling, Sternus vulgaris and house sparrow, Passer domesticus. Host seeking C. pipiens were three times more likely to enter robin-baited traps when with the alternate host was a European starling (n = 4 trials; OR = 3.06; CI [1.42–6.46]) and almost twice more likely when the alternative was a house sparrow (n = 8 trials; OR = 1.80; CI = [1.22–2.90]). There was no difference in the probability of trap entry when two robins were offered (n = 8 trials). Logistic regression analysis determined that the age, sex and weight of the birds, the date of the trial, starting-time, temperature, humidity, wind-speed and age of the mosquitoes had no effect on the probability of a choosing a robin over an alternate bird. Findings indicate that preferential feeding by C. pipiens mosquitoes on certain avian hosts is likely to be inherent, and we discuss the implications innate host preferences may have on enzootic WNV transmission

    Variation in the Microbiota of Ixodes Ticks with Regard to Geography, Species, and Sex

    Get PDF
    Ixodes scapularis is the principal vector of Lyme disease on the East Coast and in the upper Midwest regions of the United States, yet the tick is also present in the Southeast, where Lyme disease is absent or rare. A closely related species, I. affinis, also carries the pathogen in the South but does not seem to transmit it to humans. In order to better understand the geographic diversity of the tick, we analyzed the microbiota of 104 adult I. scapularis and 13 adult I. affinis ticks captured in 19 locations in South Carolina, North Carolina, Virginia, Connecticut, and New York. Initially, ticks from 4 sites were analyzed by 454 pyrosequencing. Subsequently, ticks from these sites plus 15 others were analyzed by sequencing with an Illumina MiSeq machine. By both analyses, the microbiomes of female ticks were significantly less diverse than those of male ticks. The dissimilarity between tick microbiomes increased with distance between sites, and the state in which a tick was collected could be inferred from its microbiota. The genus Rickettsia was prominent in all locations. Borrelia was also present in most locations and was present at especially high levels in one site in western Virginia. In contrast, members of the family Enterobacteriaceae were very common in North Carolina I. scapularis ticks but uncommon in I. scapularis ticks from other sites and in North Carolina I. affinis ticks. These data suggest substantial variations in the Ixodes microbiota in association with geography, species, and sex
    corecore